Reviewer’s Guide for Remote 3D Graphics Apps

Part 2: vSphere GPU Pass-through

with XenDesktop 7 Apps,
Nvidia GRID K1/K2 cards,
Dell R720 Server
Contents

Audience .. 1
Related Documents in this Series ... 1
About the Authors .. 1
Lab Environment .. 2
VMware: Virtual Dedicated Graphics Acceleration (vDGA) ... 4
VMware vSphere vDGA Configuration ... 4
Enable the Host for GPU Pass-through .. 4
Enable Device Pass-through .. 6
Enable the Virtual Machine for GPU Pass-through ... 8
Installation of XenDesktop 7 and Delivering 3D Apps from Windows Server OS 15
End-user Experience from Citrix Receiver .. 15
 Launch desktops and applications on Windows client ... 15
 Launch multiple sessions to see GPU sharing in action ... 17
Appendix .. 18
 Third-party 3D applications and GPU benchmark tools and blogs .. 19
 Command to check if GPU is installed properly .. 20
 Related Documents in this series .. 23
Audience

In the first part of this guide, we saw how to physically install Nvidia GRID cards with graphics processing units (GPU) in compatible server hardware. Part 1 also discusses how to enable GPU pass-through in XenServer and test that it is working in the VM. In this part, we list the steps necessary to enable shared GPU acceleration for 3D applications using Citrix XenDesktop 7 Apps on VMware vSphere. VMware calls this virtual Dedicated Graphics Acceleration (vDGA).

This guide walks through the following topics:

- Configuration of GPU acceleration on the hypervisors – vSphere 5.1
- Install, configure and assign GPU to a XenDesktop 7 Windows Server VM
- Verify 3D applications are using the GPU
- Install and publish 3D applications and hosted shared desktop(s) using Desktop Studio
- Access 3D applications from Citrix Receiver on any device

It is assumed that the reader has good knowledge of networking, virtualization, server hardware, and Windows administration. Familiarity with Citrix and Nvidia products is recommended but not essential to complete these steps. Please see the resources section for more information.

Related Documents in this Series

- **Part 1**: XenServer GPU pass-through for Citrix XenDesktop 7 (includes, physical installation of GPU cards)
- **Part 2**: vSphere GPU pass-through (a.k.a vDGA) for Citrix XenDesktop 7
- **Part 3**: XenServer GPU virtualization (a.k.a vGPU) for Citrix XenDesktop 7
- **Part 4**: vSphere shared GPU (a.k.a vSGA) for Citrix XenDesktop 7

About the Authors

Pushpal Ray and Mayunk Jain in the Technical Marketing team of Citrix XenDesktop produced this guide.

Pushpal (@pushpalray) is a Technical Marketing Engineer with over 10 years experience in 3D graphics, infrastructure management, and virtualization. Mayunk (@mayunkj) is responsible for competitive marketing, technical demos, and sales enablement for the desktop and cloud solutions at Citrix.
Lab Environment

<table>
<thead>
<tr>
<th>Hardware</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphical Processing Unit (GPU)</td>
<td>NVIDIA GRID K1 (K1 and K2 Specs)</td>
</tr>
<tr>
<td>Server hardware</td>
<td>Dell R720 (PowerEdge R720 Technical Guide)</td>
</tr>
</tbody>
</table>
| GPU Installation Kit | - Power Cables (2 – Internal for GPU)
| | - Heat Sink |
| Storage | Local/ NFS |

<table>
<thead>
<tr>
<th>Software</th>
<th></th>
</tr>
</thead>
</table>
| Hypervisor(s) | VMware ESXi 5.1.0 build 838463
| | XenServer 6.2.0-rc4 build 69934c |
| NVIDIA GPU driver | 320.00 (GRID K1) |
| Guest OS | Windows Server 2008 R2 Standard Service Pack 1
| | Windows 7 Service Pack 1 |

Go to Control Panel → Add/Remove Programs and ensure the following components are updated on your target virtual machine before you begin the 3D optimization process.

<table>
<thead>
<tr>
<th>Tools and Applications</th>
<th></th>
</tr>
</thead>
</table>
| Hypervisor Tools (latest) | VMware Tools
| | XenServer Tools |
| Windows Applications | Adobe Flash Player
| | Adobe Reader
| | Java Plugin
| | Microsoft .NET Framework 4 (latest) |
| GPU statistics (free third-party utilities) | TechPowerUp GPU-Z
| | OpenGL Viewer |

The process for enabling 3D acceleration for shared user-sessions is quite similar with certain customizations for each hypervisor. Figure 1 and Figure 2 shows the difference between Citrix and VMware implementation of GPU pass-through.
Legend

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Operating system (OS) type</td>
<td>Windows Server is a multi-user OS, while Windows Desktop is a single-user OS</td>
</tr>
<tr>
<td>2</td>
<td>User-sessions</td>
<td>Each application is running in its own user-session, within the same OS instance</td>
</tr>
<tr>
<td>3</td>
<td>Delivery Agent</td>
<td>The Citrix software that enables connections between end-users and the published applications</td>
</tr>
<tr>
<td>4</td>
<td>Hypervisor</td>
<td>This is the platform to virtualize the applications, and enable sharing of resources such as GPU</td>
</tr>
<tr>
<td>5</td>
<td>GPU card</td>
<td>GRID architecture is the next-generation hardware from Nvidia that supports multiple GPU cards on a single board, and has been designed to work with virtualized workloads.</td>
</tr>
<tr>
<td>6</td>
<td>Graphics driver</td>
<td>Renders the graphics commands from the 3D applications to the display.</td>
</tr>
<tr>
<td>7</td>
<td>Graphics Virtualization type</td>
<td>In the case of GPU-pass-through or vDGA, the virtual machine has direct and full access to the underlying GPU hardware.</td>
</tr>
</tbody>
</table>
VMware: Virtual Dedicated Graphics Acceleration (vDGA)

Source: VMware Horizon View Graphics Acceleration Deployment Guide [PDF]

As seen in Figure 2 above, enabling vDGA on VMware vSphere allows VM full and direct access to the underlying GPU hardware. We will enable vDGA (also called GPU pass-through) for a Windows Server virtual machine that will host the 3D applications to be delivered using XenDesktop 7.

To configure an ESXi host with only a single GPU, first find the PCI ID of the graphics device by running the following command:

```
~ # lspci | grep -i display
00:07:00.0 Display controller: nVidia Corporation GK107 [VGX K1]
00:08:00.0 Display controller: nVidia Corporation GK107 [VGX K1]
00:09:00.0 Display controller: nVidia Corporation GK107 [VGX K1]
00:0a:00.0 Display controller: nVidia Corporation GK107 [VGX K1]
00:10:00.0 Display controller: Matrox Electronics Systems Ltd. G200eR2
```

00:07:00.0 is the PCI ID of the graphics card.

Confirm Successful Installation

To check if the Graphics Adapter has been installed correctly, run the following command on the ESXi host. In case of GRID K1, it shows the 4 GPU cards available on the single board

```
~ # esxcli hardware pci list -c 0x0300 -m 0xff
```

See the Appendix for detailed command output.

VMware vSphere vDGA Configuration

This section takes you through enabling GPU pass-through at the host level and preparing the virtual machines for 3D rendering.

Enable the Host for GPU Pass-through

To enable an ESXi host for GPU pass-through, follow the documented checks and steps in the following section.

(Optional Step) Check VT-d or AMD IOMMU Is Enabled

[Note: This step is only required when the server hardware is new and hypervisor is not yet installed.]

Before pass-through can be enabled, check if VT-d or AMD IOMMU is enabled on the host by running the following command, either via SSH or on the console. (Note: replace `<module_name>` with the name of the module: `vtdmar` for Intel, `AMDiommu` for AMD).

```
# esxcfg-module -l | grep <module_name>
```
If above does not give any output, then browse to the below location to verify either vtddmar or AMDiommu is listed depending on your server hardware.

```
/usr/lib/vmware/vmkmod # ls
AMDIommu               filedriver               megaraid_mbox
aacraid                fnic                      megaraid_sas
adp94xx                forcedeth                migrate
ahci                   hbr_filter               mpt2sas
```

If the appropriate module is not present, you might have to enable it in the BIOS, or your hardware might not be capable of providing PCI passthrough.

BIOS check for AMD-V on a Dell R720 server

BIOS check for Intel-VT on a Supermicro server
Enable Device Pass-through

Using the vSphere Client, connect to VMware vCenter and select the host with the GPU card installed.

Select the **Configuration** tab for the host.

Note: If the host already has devices enabled for passthrough, these devices will be listed here.

Click **Advanced Settings** (in the top left Hardware section).

To configure passthrough for the GPU, click **Configure Passthrough**.
In the Mark Devices for Passthrough window, check the box that corresponds to the GPU adapter installed in the host.

You'll receive a Warning:

The device has a dependent device. The dependent device will also be marked as passthrough enabled automatically!

You may ignore the warning message and click OK.

In the Mark Devices for Passthrough window, check the box that corresponds to the GPU adapter installed in the host.

Click OK.
Enable the Virtual Machine for GPU Pass-through

To enable a virtual machine for GPU pass-through, follow the documented checks and steps in the following section.

Update to Hardware Version 9

You must upgrade all 3D virtual machines to Hardware version 9 (HWv9 shows as vmx-09) to ensure maximum compatibility.
From vCenter:
→ Right-click the virtual machine to be upgraded
→ Select Upgrade Virtual Hardware

Upgrade Warning
The virtual hardware version upgrade is an irreversible process. You may ignore this message.

Post Virtual Hardware upgrade:
Virtual Machine Version is vmx-09

Reserve All Configured Memory

For vDGA to function, all the virtual machine configured memory must be reserved. If each virtual machine has 2GB of memory allocated, you should reserve all 2GB. To do this:

Select the Reserve all guest memory option when you view the Memory option under the Resources tab in a virtual machine’s settings window.

By default, memory of VMs are unreserved i.e. Reserve all guest memory check-box is unchecked.

Adjust_pciHole.start

Note: This is required only if the virtual machine has more than 2GB of configured memory. Before you start, ensure that the virtual machine is shut down completely.
Add the PCI Device

To enable vDGA for a virtual machine, the PCI device needs to be added to the virtual machine’s hardware.

Using the vSphere Client, connect directly to the ESXi host with the GPU card installed, or select the host in vCenter.
Right-click the virtual machine and \textit{Edit Settings}.

Under Hardware tab, click \textit{Add…}.

\textbf{Add} a new device by selecting \textbf{PCI Device} from the drop-down list, and click \textbf{Next}.

Select \textbf{PCI Device}, click \textbf{Next}.
Select one of the GPUs from the GRID as the passthrough device to connect to the virtual machine from the drop-down list, and click **Next**.

All the four GPUs in the GRID are listed under PCIe device connection list.

Click **Finish**
Install the NVIDIA Driver

Two ways to install NVIDIA driver on the guest OS (Desktop VDA and/or XenApp server):

- **Microsoft Windows Update**: Run windows update and NVIDIA driver will be available for download under Optional updates.

- **NVIDIA website**: Download and install the latest NVIDIA Windows driver on the virtual machine. All NVIDIA drivers can be downloaded from the NVIDIA Download Drivers page.
NVIDIA Driver Downloads

<table>
<thead>
<tr>
<th>Product</th>
<th>Current Installed Driver</th>
<th>Recommended</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRID K1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pre-requisite to scan: Latest Java update

The nvidia.com website scans automatically and shows the appropriate latest driver to download

Direct download for GRID K1 URL:

Before: Display adapter has warning before NVIDIA guest OS driver is installed

After: Display adapter with NO warning after NVIDIA guest OS driver is installed

GPU-Z shows NVIDIA GRID K1 running on the VM

After the driver is installed, reboot the virtual machine.

XenServer GPU-Passthrough

Please see the Part 1 of this guide for step-by-step instructions on enabling GPU pass-through on Citrix XenServer.
Installation of XenDesktop 7 and Delivering 3D Apps from Windows Server OS

- Install Virtual Desktop Agent (VDA) on the guest OS. For publishing hosted applications and shared desktops, install VDA on Windows Server 2008 R2 or Server 2012.
- Please see the Reviewer’s Guide for step-by-step instructions on installing the virtual desktop agent and other Citrix XenDesktop components such as the Studio.

End-user Experience from Citrix Receiver

This section shows the users launching 3D applications published with XenDesktop 7 Apps (formerly, XenApp) using Citrix Receiver on the end-point devices. In this example, we launch multiple sessions of Unigine Heaven 3D and Google Earth, freely available demo apps, from XenDesktop server hosted on both VMware vSphere and Citrix XenServer (with GPU enabled, as seen previously).

<table>
<thead>
<tr>
<th>3D Application</th>
<th>Unigine Heaven, Google Earth, eDrawings</th>
</tr>
</thead>
</table>
| Monitoring Tools used | o Process Explorer with GPU monitoring enabled
| | o GPU-Z
| | o Furmark
| | o GPU Shark |
| No. of XenApp sessions (users) tested | 2 and 4 |
| GPU Card | GRID K1 |

Launch desktops and applications on Windows client

Citrix Receiver is the unified access client to access applications and desktops from StoreFront. With a user account, you will access those applications and desktops.

<table>
<thead>
<tr>
<th>#</th>
<th>Screen capture</th>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>On a client machine, Windows 7 in this case, open a browser and go to the default Storefront URL http://<yourservename>/Citrix/StoreWeb</td>
</tr>
</tbody>
</table>
If Citrix Receiver is not already installed on the client, you are prompted to install it. Accept the EULA, Click Install and follow the installation process.

Return to the login page once it is installed.

Login as a domain user. Click the + sign at the left edge of the screen, and click All Apps to see list of available apps.

Click a few apps and add them to your self-service portal.
Launch multiple sessions to see GPU sharing in action

This screenshot shows 4 3D user-sessions sharing single GPU @ ~52-55% GPU Load
Summary

In this first part of the HDX 3D Pro Reviewer’s Guide, we learnt how to identify the different hardware components of HDX 3D Pro solution and complete the physical installation. We also saw how to enable GPU pass-through on XenServer. In this document, we configured GPU pass-through on VMware’s vSphere hypervisor, and tested the GPU being ready for use inside the virtual machine (VM). Using a Windows Server VM, this GPU can be shared by multiple users through XenDesktop 7 Apps. Please refer to the XenDesktop 7 Reviewer’s Guide to learn how these VMs act as the base image for HDX 3D delivery using Citrix XenDesktop. It explains the steps for setting up the XenDesktop infrastructure and accessing applications from thin-clients and standard PCs using Citrix Receiver.

In the next two parts, we learn the steps to enable shared GPU access for desktops using the hardware virtualization technology in XenServer (vGPU) and software implementation in vSphere (vSGA).
Appendix

Third-party 3D applications and GPU benchmark tools and blogs

[Note: These are utilities found on the Internet and not provided by Citrix. Citrix does not guarantee or support use of these tools.]

<table>
<thead>
<tr>
<th>Third-party tools</th>
<th>URLs</th>
</tr>
</thead>
<tbody>
<tr>
<td>3DMark</td>
<td>http://www.3dmark.com/</td>
</tr>
<tr>
<td></td>
<td>Download: location1 or location2</td>
</tr>
<tr>
<td>3dmark</td>
<td>http://www.futuremark.com/benchmarks/</td>
</tr>
<tr>
<td>Furmark</td>
<td>http://www.ozone3d.net/benchmarks/fur/</td>
</tr>
<tr>
<td></td>
<td>GPU Shark:</td>
</tr>
</tbody>
</table>

Demo Apps

<table>
<thead>
<tr>
<th>Demo Apps</th>
<th>URLs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Google Earth</td>
<td>http://www.google.com/earth</td>
</tr>
<tr>
<td>Adobe Photoshop (trial)</td>
<td>http://www.adobe.com/photoshop</td>
</tr>
<tr>
<td>Autodesk Inventor</td>
<td>http://www.autodesk.com/inventor</td>
</tr>
</tbody>
</table>
Command to check if GPU is installed properly

To check if the Graphics Adapter has been installed correctly, run the following command on the ESXi host. In case of GRID K1, it shows the 4 GPU cards available on the single board:

```
~ # esxcli hardware pci list -c 0x0300 -m 0xff
000:007:00.0
  Address: 000:007:00.0
  Segment: 0x0000
  Bus: 0x07
  Slot: 0x00
  Function: 0x00
  VMkernel Name: NVIDIA Corporation
  Device Name: GK107 [VGX K1]
  Configured Owner: Unknown
  Current Owner: VMkernel
  Vendor ID: 0x10de
  Device ID: 0x0ff2
  SubVendor ID: 0x10de
  SubDevice ID: 0x099d
  Device Class: 0x0300
  Device Class Name: VGA compatible controller
  Programming Interface: 0x00
  Revision ID: 0xa1
  Interrupt Line: 0x0f
  IRQ: 15
  Interrupt Vector: 0xc0
  PCI Pin: 0xc0
  Spawned Bus: 0x00
  Flags: 0x0201
  Module ID: -1
  Module Name: None
  Chassis: 0
  Physical Slot: 8
  Slot Description: Passthru Capable: true
  Parent Device: PCI 0:6:8:0
  Dependent Device: PCI 0:6:8:0
  Reset Method: Bridge reset
  FPT Sharable: true

000:008:00.0
  Address: 000:008:00.0
  Segment: 0x0000
  Bus: 0x08
  Slot: 0x00
  Function: 0x00
  VMkernel Name: NVIDIA Corporation
  Device Name: GK107 [VGX K1]
  Configured Owner: Unknown
  Current Owner: VMkernel
```
Vendor ID: 0x10de
Device ID: 0x0ff2
SubVendor ID: 0x10de
SubDevice ID: 0x099d
Device Class: 0x0300
Device Class Name: VGA compatible controller
Programming Interface: 0x00
Revision ID: 0xa1
Interrupt Line: 0x0e
IRQ: 14
Interrupt Vector: 0xc8
PCI Pin: 0xc8
Spawned Bus: 0x00
Flags: 0x0201
Module ID: -1
Module Name: None
Chassis: 0
Physical Slot: 9
Slot Description:
Passthru Capable: true
Parent Device: PCI 0:6:9:0
Dependent Device: PCI 0:6:9:0
Reset Method: Bridge reset
FPT Sharable: true

000:009:00.0
Address: 000:009:00.0
Segment: 0x0000
Bus: 0x09
Slot: 0x00
Function: 0x00
VMkernel Name:
Vendor Name: NVIDIA Corporation
Device Name: GK107 [VGX K1]
Configured Owner: Unknown
Current Owner: VMkernel
Vendor ID: 0x10de
Device ID: 0x0ff2
SubVendor ID: 0x10de
SubDevice ID: 0x099d
Device Class: 0x0300
Device Class Name: VGA compatible controller
Programming Interface: 0x00
Revision ID: 0xa1
Interrupt Line: 0x0f
IRQ: 15
Interrupt Vector: 0xc0
PCI Pin: 0x63
Spawned Bus: 0x00
Flags: 0x0201
Module ID: -1
Module Name: None
Chassis: 0
Physical Slot: 16
Slot Description:
Passthru Capable: true
Parent Device: PCI 0:6:16:0
Dependent Device: PCI 0:6:16:0
Reset Method: Bridge reset
FPT Sharable: true

000:00a:00.0
Address: 000:00a:00.0
Segment: 0x0000
Bus: 0x0a
Slot: 0x00
Function: 0x00
VMkernel Name:
Vendor Name: NVIDIA Corporation
Device Name: GK107 [VGX K1]
Configured Owner: Unknown
Current Owner: VMkernel
Vendor ID: 0x10de
Device ID: 0x0ff2
SubVendor ID: 0x10de
SubDevice ID: 0x099d
Device Class: 0x0300
Device Class Name: VGA compatible controller
Programming Interface: 0x00
Revision ID: 0xa1
Interrupt Line: 0x0e
IRQ: 14
Interrupt Vector: 0xc8
PCI Pin: 0x00
Spawned Bus: 0x00
Flags: 0x0201
Module ID: -1
Module Name: None
Chassis: 0
Physical Slot: 17
Slot Description:
Passthru Capable: true
Parent Device: PCI 0:6:17:0
Dependent Device: PCI 0:6:17:0
Reset Method: Bridge reset
FPT Sharable: true

~ #
If the NVIDIA GPU is not listed in the above output, then GPU card is either not installed correctly and/or is malfunctioning. Also, ensure the Xorg service is up and running.
Related Documents in this Series

Part 1: XenServer GPU pass-through for Citrix XenDesktop 7 (includes, physical installation of GPU cards)
Part 2: vSphere GPU pass-through (a.k.a vDGA) for Citrix XenDesktop 7
Part 3: XenServer GPU virtualization (a.k.a vGPU) for Citrix XenDesktop 7
Part 4: vSphere shared GPU (a.k.a vSGA) for Citrix XenDesktop 7