
citrix.com 1

Optimization

Oct 13, 2015

http://docs.citrix.com

citrix.com 2

Optimization

The NetScaler optimization features reduce transaction times between the clients and the servers, and they reduce
bandwidth consumption. They also enhance server performance by offloading some tasks and making others more
efficient.

Client Keep-Alive Handles multiple requests on a single client connection. The client does not have to
negotiate a new connection for each request to the server.

HTTP Compression Compresses HTTP responses sent from the servers to compression-aware browsers. The
smaller responses reduce download time and save bandwidth.

Integrated Caching Stores responses to client requests. Subsequent requests for the same content are
served from the NetScaler cache instead of being forwarded to the origin server.

Front End Optimization Reduces the load and render time of web pages by simplifying and optimizing the content
served to the client browser.
Note: Supported from NetScaler 10.5 onwards.

Content Accelerator Stores server responses on a Citrix ByteMobile T2100 appliance.
Note: Supported from NetScaler 10.1 onwards.

SPDY (Speedy) Acts as a SPDY gateway between clients and your servers, providing SPDY support
without the need to configure/upgrade SPDY on the servers.
Note: Supported from NetScaler 10.1 onwards.

citrix.com 3

1.

2.

1.

Client Keep-Alive

The client keep-alive feature enables multiple client requests to be sent on a single client connection. This feature helps
in a transaction management environment where typically the server closes the client connection after serving the
response. The client then opens a new connection for each request and spends more time on the transaction.

Client keep-alive resolves this issue by keeping the connection between the client and the appliance (client-side
connection) open even after the server closes the connection with the appliance. This allows sending multiple client
requests using a single connection and saves the round trips associated with opening and closing a connection. Client
keep-alive is most beneficial in SSL sessions.

Client keep-alive is also useful under either of the following conditions:

When the server does not support client keep-alive.
When the server supports client keep-alive but an application on the server does not support client keep-
alive.

Note: Client keep-alive is applicable for HTTP and SSL traffic.

Client-keep alive can be configured globally to be able to handle all traffic. It can also be configured to be active only on
specific services.

In client keep-alive environment, the configured services intercept the client traffic and the client request is directed to
the origin server. The server sends the response and closes the connection between the server and the appliance. If a
"Connection: Close" header is present in the server response, the appliance corrupts this header in the client-side
response, and the client-side connection is kept open. As a result, the client does not have to open a new connection for
the next request; instead, the connection to the server is reopened.

Note: If a server sends back two "Connection: Close" headers, only one is edited. This results in significant delays on the
client rendering of the object because a client does not assume that the object has been delivered completely until the
connection is actually closed.

Configuring Client Keep-Alive

Updated: 2014-08-12

Client keep-alive, by default, is disabled on the NetScaler, both globally and at service level. Therefore, you must enable
the feature at the required scope.

Note: If you enable client keep-alive globally, it is enabled for all services, regardless of whether you enable it at the service
level.

Additionally, if required, you can configure some HTTP parameters to specify the maximum number of HTTP
connections retained in the connection reuse pool, enable connection multiplexing, and enable persistence Etag.

Note: When Persistent ETag is enabled, the ETag header includes information about the server that served the content. This
ensures that cache validation conditional requests or browser requests, for that content, always reaches the same server.

To configure client keep-alive by using the command line interface

At the command prompt, do the following:

Enable client keep-alive on the NetScaler.
At global level

enable ns mode cka

At service level

set service <name> - CKA YES

Note: Client keep-alive can be enabled only for HTTP and SSL services.
Configure the required HTTP parameters on the HTTP profile that is bound to the service(s).

set ns httpProfile <name> - <value> - - maxReusePool conMultiplex ENABLED persistentETag ENABLED

Note: Configure these parameters on the HTTP profile, to make them available globally.nshttp_default_profile

To configure client keep-alive by using the configuration utility

Enable client keep-alive on the NetScaler.

citrix.com 4

1.

2.

At global level

Navigate to , click and select . > System Settings Configure Modes Client side Keep Alive

At service level

Navigate to , and select the required service. In > > Traffic Management Load Balancing Services
the grouping, enable .Settings Client Keep-Alive

Configure the required HTTP parameters on the HTTP profile that is bound to the service(s).

Navigate to , and on tab, select the required profile and update the required > System Profiles HTTP Profiles
HTTP parameters.

citrix.com 5

1.

2.
3.

HTTP Compression

For websites with compressible content, the NetScaler HTTP compression feature implements lossless compression to
alleviate latency, long download times, and other network-performance problems by compressing the HTTP responses
sent from servers to compression-aware browsers. You can improve server performance by offloading the
computationally intensive compression task from your servers to the NetScaler appliance.

The following table describes the capabilities of the HTTP compression feature:

Functionality Description

Compression
Ratio

Compression ratio depends on the types of files in the responses, but is always significant,
noticeably reducing amount of data transmitted over the network.

Browser
Awareness

NetScaler serves compressed data to compression aware browsers only, reducing the
transaction time between the client and the server. Most modern web browsers support HTTP
compression.

Compression
blocking

You can define content filters to selectively block compression by applying built-in actions.

Compression
Caching

With the integrated caching feature enabled, subsequent requests for the same content are
served from the local cache, reducing the number of round trips to the server and improving
transaction times.

HTTPS
Support

Compression is particularly useful on SSL connections, because it reduces the amount of
content that has to be encrypted, either on the server or by the NetScaler appliance, and
decrypted by the client.

Intelligent
Response
Filtering

The NetScaler compression engine intelligently filters server responses on the basis of
defined compression parameters. For example, the compression engine detects zero-content-
length responses and compressed responses and does not compress them. The detection of
compressed responses enables origin sites to use server-based compression in conjunction
with the NetScaler compression feature.

Compression
Switching

The NetScaler appliance transparently directs requests from compression aware clients to
compression capable servers, so that responses to those clients are compressed, and
responses to other clients are not delayed by compression processing.

How Compression Works

A NetScaler ADC can compress both static and dynamically generated data. It applies the GZIP or the DEFLATE
compression algorithm to remove extraneous and repetitive information from the server responses and represent the
original information in a more compact and efficient format. This compressed data is sent to the client's browser and
uncompressed as determined by the browser's supported algorithm or algorithms (GZIP or DEFLATE).

NetScaler compression treats static and dynamic content differently.

Static files are compressed only once, and a compressed copy is stored in local memory. Subsequent client
requests for cached files are serviced from that memory.
Dynamic pages are dynamically created each time a client requests them.

When a client sends a request to the server:

The client request arrives at the NetScaler ADC. The ADC examines the headers and stores information about what
kind of compression, if any, the browser supports.
The ADC forwards the request to the server and receives the response.
The NetScaler compression engine examines the server response for compressibility by matching it against policies.

citrix.com 6

4.

5.

If the response matches a policy associated with a compression action, and the client browser supports a
compression algorithm specified by the action, the NetScaler ADC applies the algorithm and sends the compressed
response to the client browser.
The client applies the supported compression algorithm to decompress the response.

citrix.com 7

Configuring HTTP Compression

By default, compression is disabled on the NetScaler ADC. You must enable the feature before configuring it. If the
feature is enabled, the ADC compresses server requests specified by compression policies.

To configure HTTP compression, do the following:

Enabling HTTP Compression

Compression can be enabled for HTTP and SSL services only. You can enable it globally, so that it applies to all HTTP
and SSL services, or you can enable it just for specific services.

To enable compression by using the command line interface

At the command prompt, enter one of the following commands to enable compression globally or for a specific service:

 enable ns feature cmp
OR

<name> - set service CMP YES

To configure compression by using the configuration utility

Do one of the following:

To enable compression globally, navigate to > , click , and System Settings Configure Basic Features
select .HTTP Compression
To enable compression for a specific service, navigate to > > Traffic Management Load Balancing

, select the service, and click . In the group, click the pencil icon and enable Services Edit Settings
.Compression

Configuring a Compression Action

A compression action specifies the action to take when a request or response matches the rule (expression) in the
policy with which the action is associated. For example, you can configure a compression policy that identifies requests
that will be sent to a particular server, and associate the policy with an action that compresses the server's response.

There are four built-in compression actions:

COMPRESS: Uses the GZIP algorithm to compress data from browsers that support either GZIP or both
GZIP and DEFLATE. Uses the DEFLATE algorithm to compress data from browsers that support only the
DEFLATE algorithm. If the browser does not support either algorithm, the browserâ€™s response is not
compressed.
NOCOMPRESS: Does not compress data.
GZIP: Uses the GZIP algorithm to compress data for browsers that support GZIP compression. If the
browser does not support the GZIP algorithm, the browserâ€™s response is not compressed.
DEFLATE: Uses the DEFLATE algorithm to compress data for browsers that support the DEFLATE
algorithm. If the browser does not support the DEFLATE algorithm, the browserâ€™s response is not
compressed. After creating an action, you associate the action with one or more compression policies.

To create a compression action by using the command line interface

At the command prompt, enter the following command to create a compression action:

add cmp action <name> <cmpType> [- <addVaryHeader> - <string>]addVaryHeader varyHeaderValue

To create a compression action by using the configuration utility

Navigate to > > , click , and create a compression action to specify the Optimization HTTP Compression Actions Add
type of compression to be performed on the HTTP response.

Configure compression actions
Configure compression policies
Bind the compression policies to global bind points or to virtual servers
Optionally, configure global compression parameters

http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-compression-gen-wrapper-con/ns-compression-configactions-tsk.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-compression-gen-wrapper-con/ns-compression-configactions-tsk.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-compression-gen-wrapper-con/ns-compression-configactions-tsk.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-compression-gen-wrapper-con/ns-compression-configactions-tsk.html

citrix.com 8

Configuring a Compression Policy

A compression policy contains a rule, which is a logical expression that enables the NetScaler appliance to identify the
traffic that should be compressed.

When the NetScaler ADC receives an HTTP response from a server, it evaluates the built-in compression policies and
any custom compression policies to determine whether to compress the response and, if so, the type of compression to
apply. Priorities assigned to the policies determine the order in which the policies are matched against the requests.

The following table lists the built-in HTTP compression policies. These policies are activated globally when you enable
compression.

Built-in Classic or Default
Syntax Policy

Description

ns_nocmp_mozilla_47

ns_adv_nocmp_mozilla_47

Prevents compression of CSS files when a request is sent from a Mozilla 4.7
browser.

ns_cmp_mscss

ns_adv_cmp_mscss

Compresses CSS files when the request is sent from a Microsoft Internet
Explorer browser.

ns_cmp_msapp

ns_adv_cmp_msapp

Compresses files that are generated by the following applications:s

Microsoft Office Word
Microsoft Office Excel
Microsoft Office PowerPoint

ns_cmp_content_type

ns_adv_cmp_content_type

Compresses data when the response containsContent-Type header and contains
text.

ns_nocmp_xml_ie

ns_adv_nocmp_xml_ie

Prevents compression when a request is sent, from a Microsoft Internet Explorer
browser and the response contains a Content-Type header and contains text or
xml.

To create a compression policy by using the command line interface

At the command prompt, enter the following command to create a compression policy:

add cmp policy <name> <expression> - <string>-rule resAction

To create a compression policy by using the configuration utility

Navigate to > > , click , and create a compression policy by specifying Optimization HTTP Compression Policies Add
the condition and the corresponding action to be executed.

Binding a Compression Policy

To put a compression policy into effect, you must bind it either globally, so that it applies to all traffic that flows through
the NetScaler ADC, or to a specific virtual server, so that the policy applies only to requests whose destination is the VIP
address of that virtual server.

When you bind a policy, you assign it a priority. The priority determines the order in which the policies you define are
evaluated. You can set the priority to any positive integer.

To bind a compression policy by using the command line interface

At the command prompt, enter one of the following commands to bind a compression policy globally or to a specific
virtual server:

 <policyName> [<positive_integer>] [(ENABLED|DISABLED)]...bind cmp global -priority -state

citrix.com 9

 <vserverName> <policyName> <positive_integer>. Repeat this bind lb vserver -policyName -priority
command for each virtual server to which you want to bind the compression policy.

To bind a compression policy by using the configuration utility

Do one of the following:

At global level Navigate to > > , click and bind Optimization HTTP Compression Policies Policy Manager
the required policies by specifying the relevant and (Request/Response).Bind Point Connection Type
At virtual server level

For load balancing virtual server, Navigate to > > Traffic Management Load Balancing Virtual Servers
, select the required virtual server, click , and bind the relevant policy.Policies
For content switching , Navigate to > > virtual server Traffic Management Content Switching Virtual

, select the required virtual server, click , and bind the relevant policy.Servers Policies

Setting the Global Compression Parameters for Optimal Performance

Many users accept the default values for the global compression parameters, but you might be able provide more
effective compression by customizing these settings.

The following table describes the compression parameters that you can set on the NetScaler ADC.

Compression
Parameters

Description

Quantum
size

Size, in KB, of the buffer maintained for accumulating server responses. The responses are
compressed when the buffer size exceeds this value. For example, if you set the quantum size
to 50 KB, the NetScaler ADC compresses the buffer's contents when its size becomes larger
than 50 KB. Minimum value: 1. Maximum value: 63488. Default: 57344.

Compression
level

Level of compression to apply to server responses. Possible values: Best Speed, Best
Compression, optimal.

Minimum
HTTP
response
size

Minimum size, in bytes, of an HTTP response that is compressed. Responses smaller than
the value specified by this parameter are sent without being compressed.

Bypass
compression
on CPU
usage

NetScaler CPU usage, as a percentage, at or above which no compression is done. Default:
100.

Policy Type* Type of policies used for compression. Possible values: Classic, Default Syntax. Default:
Classic.

Allow
Server-side
compression

Allow servers to send compressed data to the NetScaler ADC.

Compress
push packet

Upon receipt of a packet with a TCP PUSH flag, compress the accumulated packets
immediately, without waiting for the quantum buffer to be filled.

External
Cache

Issue a private response directive indicating that the response message is intended for a
single user and must not be cached by a shared or proxy cache.

To configure global compression parameters by using the command line interface

At the command prompt, enter the following command to configure compression parameters that apply globally:

citrix.com 10

set cmp parameter <cmpLevel> <integer> [(ENABLED | DISABLED) [-cmpLevel -quantumSize -addVaryHeader -
 <string>]]...varyHeaderValue

Note: Vary header parameters are available from NetScaler 10.5 onwards.

To configure global compression parameters by using the configuration utility

Navigate to > , click , and set the relevant Optimization HTTP Compression Change Compression Settings
parameters.

citrix.com 11

1.

2.

3.

1.

2.

3.

Evaluating Your Compression Configuration

You can view the compression statistics in the dashboard utility or in an SNMP monitor. The dashboard utility displays
summary and detailed statistics in a tabular and graphic format.

Optionally, you can also view statistics for a compression policy, including the number of hits that the policy counter
increments during the policy based compression.

Note:

For more information about the statistics and charts, see the Dashboard help on the Citrix NetScaler
appliance.
For more information about SNMP, see .

To View Compression Statistics by Using the Command Line Interface
At the command prompt, enter the following commands to display the compression statistics:

To display compression statistics summary
stat cmp
Note: The stat cmp policy command displays statistics for default syntax compression policies only.
To display compression policy hits and details

show cmp policy <name>

To display detailed compression statistics

stat cmp -detail

To View Compression Statistics by Using the Dashboard
In the Dashboard utility, you can display the following types of compression statistics:

Select Compression to display a summary of the compression statistics.
To display detailed compression statistics by protocol type, click the Details
To display the rate of requests processed by the compression feature, click the Graphical View tab.

To View Compression Statistics by Using SNMP
You can view the following compression statistics by using the SNMP network management application.

Number of compression requests (OID: 1.3.6.1.4.1.5951.4.1.1.50.1)
Number of compressed bytes transmitted (OID: 1.3.6.1.4.1.5951.4.1.1.50.2)
Number of compressible bytes received (OID: 1.3.6.1.4.1.5951.4.1.1.50.3)
Number of compressible packets transmitted (OID: 1.3.6.1.4.1.5951.4.1.1.50.4)
Number of compressible packets received (OID: 1.3.6.1.4.1.5951.4.1.1.50.5)
Ratio of compressible data received and compressed data transmitted (OID:
1.3.6.1.4.1.5951.4.1.1.50.6)
Ratio of total data received to total data transmitted (OID: 1.3.6.1.4.1.5951.4.1.1.50.7)

To View Additional Compression Statistics by Using the Configuration Utility

To display HTTP compression statistics:

Navigate to and click . > Optimization HTTP Compression Statistics

To display statistics of a compression policy

Navigate to > select the policy, and click Statistics. > > Optimization HTTP Compression Policies

To display statistics of a compression policy label

Navigate to > select a policy label, and click Statistics. > > Optimization HTTP Compression Policies

SNMP

http://docs.citrix.com/en-us/netscaler/10-1/ns-system-wrapper-10-con/ns-ag-snmp-intro-wrapper-con.html

citrix.com 12

Offloading HTTP Compression to the NetScaler ADC

Performing compression on a server can affect the serverâ€™s performance. A NetScaler ADC placed in front of your
web servers and configured for HTTP compression offloads compression of both static and dynamic content, saving
server CPU cycles and resources.

You can offload compression from the Web servers in either of two ways:

Disable compression on the web servers, enable the NetScaler Compression feature at a global level, and
configure services for compression.
Leave the compression feature enabled on the web servers and configure the NetScaler appliance to
remove the â€œAccept Encodingâ€• header from all HTTP client requests. The servers then send
uncompressed responses. The NetScaler ADC compresses the server responses before sending them to
the clients.

Note: The second option does not work if the servers automatically compress all responses. The NetScaler ADC does not
attempt to compress a response that is already compressed.

To offload HTTP compression by using the command line interface
Enable compression on each service whose responses you want to compress, and then set the servercmp parameter
to OFF. At the command prompt, enter the following commands:

set service <service name> -CMP YES

Repeat this command for each service for which you want to enable compression.

show service <service name>

Repeat this command for each service, to verify that compression is enabled.

Save config

set cmp parameter â€“serverCmp OFF

citrix.com 13

Integrated Caching

The integrated cache provides in-memory storage on the Citrix NetScaler appliance and serves Web content to users
without requiring a round trip to an origin server. For static content, the integrated cache requires little initial setup. After
you enable the integrated cache feature and perform basic setup (for example, determining the amount of NetScaler
appliance memory the cache is permitted to use), the integrated cache uses built-in policies to store and serve specific
types of static content, including simple Web pages and image files. You can also configure the integrated cache to
store and serve dynamic content that is usually marked as non-cacheable by Web and application servers (for example,
database records and stock quotes).

When a request or response matches the rule (logical expression) specified in a built-in policy or a policy that you have
created, the NetScaler appliance performs the action associated with the policy. By default, all policies store cached
objects in and retrieve them from the Default content group, but you can create your own content groups for different
types of content.

To enable the NetScaler appliance to find cached objects in a content group, you can configure selectors, which match
cached objects against expressions, or you can specify parameters for finding objects in the content group. If you use
selectors (which Citrix recommends), configure them first, so that you can specify selectors when you configure content
groups. Next, set up any content groups that you want to add, so that they are available when you configure the
policies. To complete the initial configuration, create policy banks by binding each policy to a global bind point or a
virtual server, or to a label that can be called from other policy banks.

You can tune the performance of the integrated cache, using methods such as pre-loading cached objects before they
are scheduled to expire. To manage the handling of cached data once it leaves the NetScaler appliance, you can
configure caching-related headers that are inserted into responses. The integrated cache can also act as a forward
proxy for other cache servers.

Note: Integrated caching requires some familiarity with HTTP requests and responses. For information about the structure of
HTTP data, see at " ."Live HTTP Headers http://livehttpheaders.mozdev.org/

http://livehttpheaders.mozdev.org/

citrix.com 14

How the Integrated Cache Works

The integrated cache monitors HTTP and SQL requests that flow through the Citrix NetScaler appliance and compares
the requests with stored policies. Depending on the outcome, the integrated cache feature either searches the cache for
the response or forwards the request to the origin server. For HTTP requests, the integrated cache feature can also
serve partial content from the cache in response to single byte-range and multi-part byte-range requests.

Cached data can be compressed if the client accepts compressed content. You can configure expiration times for a
content group, and you can selectively expire entries in a content group.

Data that is served from the integrated cache is a cache hit, and data served from the origin is a cache miss, as
described in the following table.

Table 1. Cache Hits and Misses

Transaction
Type

Specifies

Cache Hit Responses that the NetScaler appliance serves from the cache, including:

Static objects, for example, image files and static Web pages
200 OK pages
203 Non-Authoritative Response pages
300 Multiple Choices pages
301 Moved Permanently pages
302 Found pages
304 Not Modified pages

These responses are known as positive responses.

The NetScaler appliance also caches the following negative responses:

307 Temporary Redirect pages
403 Forbidden pages
404 Not Found pages
410 Gone pages

To further improve performance, you can configure the NetScaler appliance to cache additional
types of content.

Storable
Cache Miss

For a storable cache miss, the NetScaler appliance fetches the response from the origin server,
and stores the response in the cache before serving it to the client.

Non-
Storable
Cache Miss

A non-storable cache miss is inappropriate for caching. By default, any response that contains
the following status codes is a non-storable cache miss:

201, 202, 204, 205, 206 status codes
All 4xx codes, except 403, 404 and 410
5xx status codes

Note: To integrate dynamic caching with your application infrastructure, use the NITRO API to issue cache commands
remotely. For example, you can configure triggers that expire cached responses when a database table is updated.

To ensure the synchronization of cached responses with the data on the origin server, you configure expiration
methods. When the NetScaler appliance receives a request that matches an expired response, it refreshes the
response from the origin server.

Note: Citrix recommends that you synchronize the times on the NetScaler appliance and the back-end server(s).

citrix.com 15

Example of Dynamic Caching

Dynamic caching evaluates HTTP requests and responses based on parameter-value pairs, strings, string patterns, or
other data. For example, suppose that a user searches for Bug 31231 in a bug reporting application. The browser sends
the following request on the user's behalf:

GET /mybugreportingsystem/mybugreport.dll?IssuePage&RecordId=31231&Template=view&TableId=1000
Host: mycompany.net
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9) Gecko/2008052906 Firefox/3.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-us,en;q=0.5
. . .

In this example, GET requests for this bug reporting application always contain the following parameters:

IssuePage
RecordID
Template
TableId

GET requests do not update or alter the data, so you can configure these parameters in caching policies and selectors,
as follows:

You configure a caching policy that looks for the string mybugreportingsystem and the GET method in HTTP
requests. This policy directs matching requests to a content group for bugs.
In the content group for bugs, you configure a hit selector that matches various parameter-value pairs,
including IssuePage, RecordID, and so on.

Note that a browser can send multiple GET requests based on one user action. The following is a series of three
separate GET requests that a browser issues when a user searches for a bug based on a bug ID.

GET /mybugreportingsystem/mybugreport.dll?IssuePage&RecordId=31231&Template=view&TableId=1000
GET /mybugreportingsystem/mybugreport.dll?IssuePage&Template=viewbtns&RecordId=31231&TableId=1000
GET /mybugreportingsystem/mybugreport.dll?IssuePage&Template=viewbody&RecordId=31231&tableid=1000

To fulfill these requests, multiple responses are sent to the user's browser, and the Web page that the user sees is an
assembly of the responses.

If a user updates a bug report, the corresponding responses in the cache should be refreshed with data from the origin
server. The bug reporting application issues HTTP POST requests when a user updates a bug report. In this example,
you configure the following to ensure that POST requests trigger invalidation in the cache:

A request-time invalidation policy that looks for the string mybugreportingsystem and the POST HTTP
request method, and directs matching requests to the content group for bug reports.
An invalidation selector for the content group for bug reports that expires cached content based on the
RecordID parameter. This parameter appears in all of the responses, so the invalidation selector can expire
all relevant items in the cache.

The following excerpt shows a POST request that updates the sample bug report.

POST /mybugreportingsystem/mybugreport.dll?TransitionForm HTTP/1.1\r\n
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0) Opera 7.23 [en]\r\n
Host: mybugreportingsystem\r\n
Cookie:ttSearch.134=%23options%3Afalse%23active%23owner%3Afalse%23unowned%3Afalse%23submitter%3Afalse%23incsub%3Atrue;
Cookie2: $Version=1\r\n
. . .
\r\n
ProjectId=2&RecordId=31231&TableId=1000&TransitionId=1&Action=Update&CopyProjectId=0&ReloadForm=0&State=&RecordLockId=49873+issues+in+HTTP&F43. . .

When the Citrix NetScaler appliance receives this request, it does the following:

Matches the request with an invalidation policy.
Finds the content group that is named in the policy.
Applies the invalidation selector for this content group and expires all responses that match
RecordID=31231.

citrix.com 16

When a user issues a new request for this bug report, the NetScaler appliance goes to the origin server for updated
copies of all the responses that are associated with the report instance, stores the responses in the content group, and
serves them to the user's browser, which reassembles the report and displays it.

citrix.com 17

1.
2.
3.

Setting Up the Integrated Cache

To use the integrated cache, you must install the license and enable the feature. After you enable the integrated cache,
the CitrixÂ® NetScalerÂ® appliance automatically caches static objects as specified by built-in policies and generates
statistics on cache behavior. (Built-in policies have an underscore in the initial position of the policy name.)

Even if the built-in policies are adequate for your situation, you might want to modify the global attributes. For example,
you might want to modify the amount of NetScaler appliance memory allocated to the integrated cache.

If you would like to observe cache operation before changing settings, see "
."Statistics

Note: The NetScaler cache is an in-memory store that is purged when you restart the appliance.
This section includes the following details:

Installing the Integrated Cache License

Configuring Global Attributes for Caching

Installing the Integrated Cache License

Updated: 2013-10-28

An integrated cache license is required. For information about licenses, see information about obtaining NetScaler
licenses at " ."

To install the license for the Integrated Caching feature

Obtain a license code from Citrix, go to the command line interface, and log in.
At the command line interface, copy the license file to the folder./nsconfig/license
Reboot the NetScaler appliance by using the following command:

reboot

Enabling Integrated Caching

Updated: 2015-05-20

When you enable integrated caching, the NetScaler appliance begins caching server responses. If you have not
configured any policies or content groups, the built in policies store cached objects in the Default content group.

To enable integrated caching by using the command line interface

At the command prompt, type one of the following commands to enable or disable integrated caching:

 enable ns feature IC

To enable integrated caching by using the configuration utility

Navigate to , click , and select . > System Settings Configure Basic Features Integrated Caching

Configuring Global Attributes for Caching

Updated: 2014-08-08

Global attributes apply to all cached data. You can specify the amount of NetScaler memory allocated to the integrated
cache, Via header insertion, a criterion for verifying that a cached object should be served, the maximum length of a
POST body permitted in the cache, whether to bypass policy evaluation for HTTP GET requests, and an action to take
when a policy cannot be evaluated.

The cache memory capacity is limited only by the memory of the hardware appliance. Also, any packet engine (the
central distribution hub of all incoming TCP requests) in the nCore NetScaler appliance is aware of objects cached by
other packet engines in the nCore NetScaler appliance.

Note that the default global memory limit is 0. Therefore, even if Integrated Caching is enabled, the NetScaler appliance
does not cache any objects. You must explicitly set the global memory limit when integrated caching is enabled.

Displaying Cached Objects and Cache
Statistics

Installing the Integrated Cache License
Enabling Integrated Caching
Configuring Global Attributes for Caching
Built-in Content Group, Pattern Set, and Policies for the Integrated Cache

 http://support.citrix.com/article/ctx121062

http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-displaycachedobjectandstats-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-settingup-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-settingup-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-displaycachedobjectandstats-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-displaycachedobjectandstats-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-settingup-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-settingup-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-settingup-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-settingup-con.html
http://support.citrix.com/article/ctx121062

citrix.com 18

You can modify the global memory limit configured for caching objects. However, when you update the global memory
limit to a value lower than the existing value (for example, from 10 GB to 4 GB), if a higher amount of memory (greater
than 4 GB) is already being used to cache objects, the NetScaler continues using that amount of memory.

This means that even though the integrated caching limit is configured to some value, the actual limit used can be
higher. This excessive memory is however released when the objects are removed from cache.

The output of the command indicates the configured value (Memory Usage limit) and the actual show cache parameter
value being used (Memory usage limit (active value)).

To configure global settings for caching by using the command line interface

At the command prompt, type:

 [<MBytes>] [<string>] [<criterion>] [<positiveInteger>] [set cache parameter -memLimit -via -verifyUsing -maxPostLen -
 <positiveInteger>] [(|)] [(|)]prefetchMaxPending -enableBypass YES NO -undefAction NOCACHE RESET

To configure global settings for caching by using the configuration utility

Navigate to , click , and configure the global settings for caching. > Optimization Integrated Caching Change Cache Settings

Built-in Content Group, Pattern Set, and Policies for the Integrated Cache

Updated: 2013-08-23

The Citrix NetScaler appliance includes a built-in integrated caching configuration that you can use for caching content.
The configuration consists of a content group called , a pattern set called , and a ctx_cg_poc ctx_file_extensions
set of integrated cache policies. In the content group , only objects that are 500 KB or smaller are cached. ctx_cg_poc
The content is cached for 86000 seconds, and the memory limit for the content group is 512 MB. The pattern set is an
indexed array of common file extensions for file-type matching.

The following table lists the built-in integrated caching policies. By default, the policies are not bound to any bind point.
You must bind them to a bind point if you want the NetScaler appliance to evaluate traffic against the policies. The
policies cache objects in the content group.ctx_cg_poc

Table 1. Built-in Integrated Caching Policies

Integrated caching policy name Policy rule

ctx_images HTTP.REQ.URL.SET_TEXT_MODE(IGNORECASE).CONTAINS_INDEX(\"ctx_file_extensions\").BETWEEN
(101,150)

ctx_web_css HTTP.REQ.URL.ENDSWITH(\".css\")

ctx_doc_pdf HTTP.REQ.URL.ENDSWITH(\".pdf\")

ctx_web_JavaScript HTTP.REQ.URL.ENDSWITH(\".js\")

ctx_web_JavaScript-
Res

HTTP.RES.HEADER(\"Content-Type\").CONTAINS(\"application/x-javascript\")

ctx_NOCACHE_Cleanup TRUE

citrix.com 19

citrix.com 20

Configuring Selectors and Basic Content Groups

You can configure selectors and apply them to content groups. When you add a selector to one or more content groups,
you specify whether the selector is to be used for identifying cache hits or identifying cached objects to be invalidated
(expired). Selectors are optional. Alternatively, you can configure content groups to use hit parameters and invalidation
parameters. However, Citrix recommends that you configure selectors.

After configuring selectors, or deciding to use parameters instead, you are ready to set up a basic content group. After
creating the basic content group, you need to decide how objects should be expired from the cache, and configure
cache expiration. You can further modify the cache as described in " " and "

", but you might first want to configure caching policies.Cookies, Headers, and Polling

Note: Content group parameters and selectors are used only at request time, and you typically associate them with policies
that use MAY_CACHE or MAY_NOCACHE actions.

Improving Cache Performance Configuring
Cookies, Headers, and Polling

http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-confcookiesheaderpolling-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-improvecacheperform-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-confcookiesheaderpolling-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-confcookiesheaderpolling-con.html

citrix.com 21

Advantages of Selectors

A selector is a filter that locates particular objects in a content group. If you do not configure a selector, the CitrixÂ®
NetScalerÂ® appliance looks for an exact match in the content group. This can lead to multiple copies of the same
object residing in a content group. For example, a content group that does not have a selector may need to store URLs
for host1.domain.com\mypage.htm, host2.domain.com\mypage.htm, and host3.domain.com\mypage.htm. In contrast, a
selector can match just the URL (mypage.html, using the expression http.req.url) and the domain (.com, using the
expression http.req.hostname.domain), allowing the requests to be satisfied by the same URL.

Selector expressions can perform simple matching of parameters (for example, to find objects that match a few query
string parameters and their values). A selector expression can use Boolean logic, arithmetic operations, and
combinations of attributes to identify objects (for example, segments of a URL stem, a query string, a string in a POST
request body, a string in an HTTP header, a cookie). Selectors can also perform programmatic functions to analyze
information in a request. For example, a selector can extract text in a POST body, convert the text into a list, and extract
a specific item from the list.

For more information about expressions and what you can specify in an expression, see " ."Policies and Expressions

http://docs.citrix.com/en-us/netscaler/10-1/ns-appexpert-con-10/ns-pi-gen-pol-config-wrapper-10-con.html

citrix.com 22

Using Parameters Instead of Selectors

Although Citrix recommends the use of selectors with a content group, you can instead configure hit parameters and
invalidation parameters. For example, suppose that you configure three hit parameters in a content group for bug
reports: BugID, Issuer, and Assignee. If a request contains BugID=456, with Issuer=RohitV and Assignee=Robert, the
NetScaler appliance can serve responses that match these parameter-value pairs.

Invalidation parameters in a content group expire cached entries. For example, suppose that BugID is ab invalidation
parameter and a user issues a POST request to update a bug report. An invalidation policy directs the request to this
content group, and the invalidation parameter for the content group expires all cached responses that match the BugID
value. (The next time a user issues a GET request for this report, a caching policy can enable the NetScaler appliance
to refresh the cached entry for the report from the origin server.)

Note that the same parameter can be used as a hit parameter or an invalidation parameter.

Content groups extract request parameters in the following order:

URL query
POST body
Cookie header

After the first occurrence of a parameter, regardless of where it occurred in the request, all its subsequent occurrences
are ignored. For example, if a parameter exists both in the URL query and in the POST body, only the one in the URL
query is considered.

If you decide to use hit and invalidation parameters for a content group, configure the parameters when you configure
the content group.

Note: Citrix recommends that you use selectors rather than parameterized content groups, because selectors are more
flexible and can be adapted to more types of data.

citrix.com 23

Configuring a Selector

A content group can use a hit selector to retrieve cache hits or use an invalidation selector to expired cached objects
and fetch new ones from the origin server.

A selector contains a name and a logical expression, called an .advanced expression

For more information about advanced expressions, see " ."

To configure a selector, you assign it a name and enter one or more expressions. As a best practice, a selector
expression should include the URL stem and host, unless there is a strong reason to omit them.

To configure a selector by using the command line interface

At the command prompt, type:

 (<rule> ...) add cache selector <selectorName>

For information about configuring the expression or expressions, see "
."command line interface

Examples

>add cache selector product_selector "http.req.url.query.value(\"ProductId\")" "http.req.url.query.value(\"BatchNum\")" "http.req.url.query.value(\"depotLocation\")"
> add cache selector batch_selector "http.req.url.query.value(\"ProductId\")" "http.req.url.query.value(\"BatchId\")" "http.req.url.query.value(\"depotLocation\")"
> add cache selector product_id_selector "http.req.url.query.value(\"ProductId\")"
> add cache selector batchnum_selector "http.req.url.query.value(\"BatchNum\")" "http.req.url.query.value(\"depotLocation\")"
> add cache selector batchid_selector "http.req.url.query.value(\"depotLocation\")" "http.req.url.query.value(\"BatchId\")"

To configure a selector by using the configuration utility

Navigate to , and add the cache selector. > > Optimization Integrated Caching Cache Selectors

Policies and Expressions

To configure a selector expression by using the
command line interface

http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-configexpressionscachingpoliciesselector-con.html
http://docs.citrix.com/en-us/netscaler/10-1/ns-appexpert-con-10/ns-pi-gen-pol-config-wrapper-10-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-configexpressionscachingpoliciesselector-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-configexpressionscachingpoliciesselector-con.html

citrix.com 24

1.
2.

3.

4.

5.

1.
2.

3.

4.

5.

About Content Groups

A content group is a container for cached objects that can be served in a response. When you first enable the integrated
cache, cacheable objects are stored in a content group named Default. You can create new content groups that have
unique properties. For example, you can define separate content groups for image data, bug reports, and stock quotes,
and you can configure the stock quote content group to be refreshed more often than the other groups.

You can configure expiration of an entire content group or selected entries in a content group.

The data in a content group can be static or dynamic, as follows:

Static content groups. Finds an exact match between the URL stem and host name on the request and the
URL stem and host name of the response.
Dynamic content groups. Looks for objects that contains particular parameter-value pairs, arbitrary strings,
or string patterns. Dynamic content groups are useful when caching data that is updated frequently (for
example, a bug report or a stock quote).

Process overview: Serving a hit from a content group

A user enters search criteria for an item, such as a bug report, and clicks the Find button in an HTML form.
The browser issues one or more HTTP GET requests. These requests contain parameters (for example, the bug
owner, bug ID, and so on).
When the NetScaler appliance receives the requests, it searches for a matching policy, and if it finds a caching policy
that matches these requests, it directs the requests to a content group.
The content group looks for appropriate objects in the content group, usually based on criteria that you configure in a
selector.

For example, the content group can retrieve responses that match NameField=username and BugID=ID.

If it finds matching objects, the NetScaler appliance can serve them to the user's browser, where they are assembled
into a complete response (for example, a bug report).

Example: Invalidating an object in a content group

A user modifies data (for example, the user modifies the bug report and clicks the Submit button).
The browser sends this data in the form of one or more HTTP requests. For example, it can send a bug report in the
form of several HTTP POST requests that contain information about the bug owner and bug ID.
The NetScaler appliance matches the requests against invalidation policies. Typically, these policies are configured to
detect the HTTP POST method.
If the request matches an invalidation policy, the NetScaler appliance searches the content group that is associated
with this policy, and expires responses that match the configured criteria for invalidation.

For example, an invalidation selector can find responses that match NameField=username and BugID=ID.

The next time the NetScaler appliance receives a GET request for these responses, it fetches refreshed versions from
the origin server, caches the refreshed responses, and serves these responses to the user's browser, where they are
assembled into a complete bug report.

citrix.com 25

Setting Up a Basic Content Group

By default, all cached data is stored in the default content group. You can configure additional content groups and
specify these content groups in one or more policies.

You can configure content groups for static content, and you must configure content groups for dynamic content. You
can modify the configuration of any content group, including the default group.

To set up a basic content group by using the command line interface

At the command prompt, type:

 <name> (<hitSelectorName> <invalidationSelectorName> | add cache contentgroup -hitSelector -invalSelector -hitParams
<hitParamName> <invalidationParamName>) <type> [<sec> | <msec>] [-invalParams -type -relExpiry -relExpiryMilliSec -

 <positiveInteger>]heurExpiryParam

Examples

> add cache contentgroup Products_Details â€“hitSelector product_selector â€“invalSelector id_selector
> add cache contentgroup bugrep -hitParams IssuePage RecordID Template TableId -invalParams RecordID -relExpiry 864000

To set up a basic content group by using the configuration utility

Navigate to , and create the content group. > > Optimization Integrated Caching Content Groups

citrix.com 26

Expiring or Flushing Cached Objects

If a response does not have an Expires header or a Cache-Control header with an expiration time (Max-Age or Smax-
Age), you must expire objects in a content group by using one of the following methods:

Configure content group expiration settings to determine whether and how long to keep the object.
Configure an invalidation policy and action for the content group. For more information, see "

."Policies for Caching and Invalidation
Expire the content group or objects within it manually.

After a cached response expires, the NetScaler appliance refreshes it the next time the client issues a request for the
response. By default, when the cache is full, the NetScaler appliance replaces the least recently used response first.

The following list describes methods for expiring cached responses using settings for a content group. Typically, these
methods are specified as a percent or in seconds:

Manual. Manually invalidate all responses in a content group or all responses in the cache.
Response-based. Specific expiration intervals for positive and negative responses. Response-based expiry
is considered only if the Last-Modified header is missing in the response.
Heuristic expiry. For responses that have a Last-Modified header, heuristic expiry is a percentage of the
time since the response was modified (calculated as current time minus the Last-Modified time, multiplied by
the heuristic expiry value). For example, if a Last-Modified header indicates that a response was updated 2
hours ago, and the heuristic expiry setting is 10%, cached objects expire after 0.2 hours. This method
assumes that frequently updated responses need to be expired more often.
Absolute or relative. Specify an exact (absolute) time when the response expires every day, in HH:MM
format, local time or GMT. Local time may not work in all time zones.

Relative expiration specifies a number of seconds or milliseconds from the time a cache miss causes a
trip to the origin server to the expiration of the response. If you specify relative expiration in
milliseconds, enter a multiple of 10. This form of expiration works for all positive responses. Last-
Modified, Expires, and Cache-Control headers in the response are ignored.

Absolute and relative expiration override any expiration information in the response itself.

On download. The option expires a response as soon as it is Expire After Complete Response Received
downloaded. This is useful for frequently updated responses, for example, stock quotes. By default, this
option is disabled.

Enabling both and accelerates the Flash Cache Expire After Complete Response Received
performance of dynamic applications. When you enable both options, the NetScaler appliance fetches
only one response for a block of simultaneous requests.

For more information, see " ."

Pinned. By default, when the cache is full the NetScaler appliance replaces the least recently used
response first. The NetScaler appliance does not apply this behavior to content groups that are marked as
pinned.

If you do not configure expiration settings for a content group, the following are additional options for expiring objects in
the group:

Configure a policy with an INVAL action that applies to the content group.
Enter the names of content groups when configuring a policy that uses an INVAL action.

How Expiration Methods Are Applied

Expiration works differently for positive and negative responses. Positive and negative responses are described in the
table, mentioned below.Expiration of Positive and Negative Responses

The following are rules of thumb for understanding the expiration method that is applied to a content group:

You can control whether the NetScaler appliance evaluates response headers when deciding whether to
expire an object.

Configuring
Policies for Caching and Invalidation

Queuing Requests to the Cache

http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-configpoliciescachinginvalidation-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-configpoliciescachinginvalidation-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-configpoliciescachinginvalidation-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-improvecacheperform-con.html

citrix.com 27

Absolute and relative expiration cause the NetScaler appliance to ignore the response headers (they
override any expiration information in the response).
Heuristic expiration settings and â€œWeak Positiveâ€• and â€œWeak Negativeâ€• expiration (labeled as

 values in the configuration utility) cause the NetScaler appliance to examine the response headers. Default
These settings work together as follows:

The value in an Expires or Cache-Control header overrides these content group settings.
For positive responses that lack an Expires or Cache-Control header but have a Last-Modified header,
the NetScaler appliance compares heuristic expiration settings with the header value.
For positive responses that lack an Expires, Cache-Control, or Last-Modified header, NetScaler
appliance uses the â€œweak positiveâ€• value.
For negative responses that lack an Expires or Cache-Control header, NetScaler appliance uses the â€œ
weak negativeâ€• value.

For a list of expiration parameters see, " ." The following table
describes how these methods are applied.

Table 1. Expiration of Positive and Negative Responses

Response
Type

Expiration Header
Type

Content Group
Setting

Period the Object Remains in the
Cache

Positive any header Expire Content
After (relExpiry)
with no other
settings

Use the value of the Expire Content
After setting.

Positive any header Expire Content At
(absExpiry) with no
other settings

Subtract current date from the value of
the Expire Content At setting.

Positive any header Expire Content
After (relExpiry)
and Expire content
at (absExpiry)

Use the smaller of the two values for
the content group settings. See the
previous rows in this table.

Positive Last-Modified (with any
other headers)

Heuristic
(heurExpiry Param)
with any other
setting

Subtract the Last-Modified date from
the current date, multiply the result by
the value of the heuristic expiry setting,
and then divide by 100.

Positive Last-Modified (with any
other headers)

Default (positive)
(weakPosRel
Expiry) and no
other setting

Use the value of the Default (positive)
expiry setting.

Positive Expires or Cache-
Control: Max-Age
header is present

Last-Modified header is
absent

Heuristic
(heurExpiry
Param), Default
(positive)
(weakPosRel
Expiry), or both

Subtract the current date from the
Expires or the Cache-Control:Max-Age
date.

Positive no caching headers Default (positive)
(weakPosRel
Expiry) and any
other expiration
setting.

Use the value of the Default (positive)
setting.

Positive no caching headers Heuristic
(heurExpiry Param)
is present

If the Last-Modified header is absent,
the response is not cached or it is
cached with an Already Expired status.

Configuring Periodic Expiration of a Content Group

http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-configselectorsbsccongps-con/ns-IC-configperiodicexpircontentgrp-tsk.html

citrix.com 28

Default (positive)
(weakPosRel
Expiry) setting is
absent

If the Last-Modified header is present,
use the heuristic expiry value.

Negative Expires or Cache-
Control:Max-Age

Expire Content
After (relExpiry),
Expire Content At
(absExpiry), or both
settings

Subtract the current date from the
value of the Expires header, or use the
value of the Cache-Control:Max-Age
header.

Negative Expires or Cache-
Control headers are
absent

Expire Content
After (relExpiry),
Expire Content At
(absExpiry), or both
settings

Response is not cached, or is cached
with an Already Expired status.

Negative Expires or Cache-
Control:Max-Age

Any setting Subtract the current date from the
Expires or Cache-Control:Max-Age
date.

Negative Expires and Cache-
Control:Max-Age
headers are absent

Default (negative)
(weakNegRel
Expiry)

Use the value of the Default (negative)
setting.

Negative Expires and Cache-
Control:Max-Age
headers are absent

Any setting other
than Default
(negative)
(weakNegRel
Expiry)

Object is not cached or is cached with
an Already Expired status.

citrix.com 29

Expiring a Content Group Manually

You can manually expire all of the entries in a content group.

To manually expire all responses in a content group by using the command
line interface

At the command prompt, type:

 expire cache contentGroup <name>

To manually expire all responses in a content group by using the configuration utility

Navigate to , select the content group, and click to expire all > > Optimization Integrated Caching Content Groups Invalidate
the responses in a content group.

To manually expire all responses in the cache by using the configuration
utility

Navigate to , and click to expire all the responses in cache. > > Optimization Integrated Caching Content Groups Invalidate All

citrix.com 30

1.
2.

Configuring Periodic Expiration of a Content Group

You can configure a content group so that it performs selective or full expiration of its entries. The expiration interval can be
fixed or relative.

To configure content group expiration by using the command line interface

At the command prompt, type:

 <name> (| | | | -heurExpiryParam|set cache contentgroup -relExpiry -relExpiryMilliSec -absExpiry -absExpiryGMT -
| |) <expirationValue>weakPosRelExpiry -weakNegRelExpiry -expireAtLastBye

To configure content group expiration by using the configuration utility

Navigate toÂ , select the content group, andÂ specify expiry method. > > Optimization Â Integrated Caching Content Groups

Expiring Individual Responses

Expiring a response forces the NetScaler appliance to fetch a refreshed copy from the origin server. Responses that do
not have validators, for example, ETag or Last-Modified headers, cannot be revalidated. As a result, flushing these
responses has the same effect as expiring them.

To expire a cached response in a content group for static data, you can specify a URL that must match the stored URL.
If the cached response is part of a parameterized content group, you must specify the group name as well as the exact
URL stem. The host name and the port number must be the same as in the host HTTP request header of the cached
response. If the port is not specified, port 80 is assumed.

To expire individual responses in a content group by using the command line interface

At the command prompt, type:

 <URL> <hostName> [<port>] [<contentGroupName>] [|expire cache object -url -host -port -groupName -httpMethod GET
] POST

To expire individual responses in a content group by using the command line interface (selector-
based)

At the command prompt, type the following command:

 <positiveInteger> expire cache object -locator

To expire a cached response by using the configuration utility

Navigate to , select the cached response, and expire. > > Optimization Integrated Caching Cached Objects

To expire a response by using the Lookup tool (selector-based)

Navigate toÂ , clickÂ Â and,Â set the search criteria to find the > > Optimization Integrated Caching Cached Objects Search
required cached response and expire.

Flushing Responses in a Content Group

You can remove, or flush, all responses in a content group, some responses in a group, or all responses in the cache.
Flushing a cached response frees up memory for new cached responses.

Note: To flush responses for more than one object at a time, use the configuration utility method. The command line interface
does not offer this option.

To flush responses from a content group by using the command line interface

At the command prompt, type:

 <name> [<queryString> | [<selectorExpressionIDList> <hostName>]]flush cache contentGroup -query -selectorValue -host

To flush responses from a content group by using the configuration utility

Navigate to . > > Optimization Integrated Caching Content Groups
In details pane, flush the responses as follows:

To flush all responses in all content groups, click , and flush all the responses.Invalidate All

citrix.com 31

2.

To flush responses in a particular content group, select the content group, click , and flush Invalidate
all the responses.

Note: If this content group uses a selector, you can selectively flush responses by entering a string in the text Selector value
box, entering a host name in the text box. Then click and . The can be a query string of up to Host Flush OK Selector value
2319 characters that is used for parameterized invalidation.

If the content group uses an invalidation parameter, you can selectively flush responses by entering a string in the Query
field.

If the content group uses an invalidation parameter and Invalidate objects belonging to target host is configured, enter
strings in the and fields.Query Host

To flush a cached response by using the command line interface

At the command prompt, type:

 <positiveInteger> | <URL> <hostName> [<port>] [flush cache object -locator -url -host -port -groupName
<contentGroupName>] [|] -httpMethod GET POST

To flush a cached response by using the configuration utility

Navigate to , select the cached object, and flush. > > Optimization Integrated Caching Cached Objects

Deleting a Content Group

You can remove a content group if it is not used by any policy that stores responses in the cache. If the content group is
bound to a policy, you must first remove the policy. Removing the content group removes all responses stored in that
group.

You cannot remove the Default, BASEFILE, or Deltajs group. The Default group stores cached responses that do not
belong in any other content group.

To delete a content group by using the command line interface

At the command prompt, type:

 rm cache contentgroup<name>

To delete a content group by using the configuration utility

Navigate to , select the content group, and delete. > > Optimization Integrated Caching Contetn Groups

citrix.com 32

Configuring Policies for Caching and Invalidation

Policies enable the integrated cache to determine whether to try to serve a response from the cache or the origin. The
Citrix NetScaler appliance provides built-in policies for integrated caching, and you can configure additional policies.
When you configure a policy, you associate it with an action. An action either caches the objects to which the policy
applies or invalidates (expires) the objects. Typically, you based caching policies on information in GET and POST
requests. You typically base invalidation policies on the presence of the POST method in requests, along with other
information. You can use any information in a GET or POST request in a caching or an invalidation policy.

You can view some of the built-in policies in the integrated cacheâ€™s Policies node in the configuration utility. The
built-in policy names begin with an underscore (_).

Actions determine what the NetScaler appliance does when traffic matches a policy. The following actions are available:

Caching actions. Policies that you associate with the CACHE action store responses in the cache and
serve them from the cache.
Invalidation actions. Policies that you associate with the INVAL action immediately expire cached
responses and refresh them from the origin server. Note that for Web-based applications, invalidation
policies often evaluate POST requests.
â€œDo not cacheâ€• actions. Policies that you associate with a NOCACHE action never store objects in
the cache.
â€œProvisionally cacheâ€• actions. Policies that you associate with a MAYCACHE or MAYNOCACHE
action depend on the outcome of additional policy evaluations.

Although the integrated cache does not store objects specified by the LOCK method, you can invalidate cached objects
upon receipt of a LOCK request. For invalidation policies only, you can specify LOCK as a method by using the
expression . Unlike policies for GET and POST requests, you must enclose the http.req.method.eq(â€œlockâ€•)
LOCK method in quotes because the NetScaler appliance recognizes this method name as a string only.

After you create a policy, you bind it to a particular point in the overall processing of requests and responses. Although
you create a policy before binding it, you should understand how the bind points affect the order of processing before
you create your policies.

The policies bound to a particular bind point constitute a policy bank. You can use goto expressions to modify the order
of execution in a policy bank. You can also invoke policies in other policy banks. In addition, you can create labels and
bind policies to them. Such a label is not associated with a processing point, but the policies bound to it can be invoked
from other policy banks.

citrix.com 33

Actions to Associate with Integrated Caching Policies

The following table describes actions for integrated caching policies.

Table 1. Actions That You Can Associate with an Integrated Caching Policy

Action Specifies

CACHE Serves a response from the cache if the response has not expired. If the response must be
fetched from the origin server, the NetScaler appliance caches the response before serving
it.

Even data that is updated and accessed frequently can be cached. For example, stock
quotes are updated frequently, but they can be cached so that they can be served quickly
to multiple users. If necessary, cached data can be refreshed immediately after it is
downloaded.

A CACHE action can be overridden by built-in policies.

NOCACHE Always fetches the response from the origin server and marks the response as non-
storable.

You typically configure NOCACHE policies for data that is sensitive or personalized.

MAY_CACHE Used in a request-time policy, this setting provisionally enables a response to be stored in
a content group, pending evaluation of response-time policies. The following are possible:

If a matching response-time policy has a CACHE action but does not specify a
content group, the response is stored in the Default group unless built-in policies
override this policy.
If a matching response-time policy has a CACHE action and specifies the same
content group as the one in the request-time policy, the response is stored in the
named content group unless built-in policies override this policy.
If a matching response-time policy has a CACHE action but specifies a different
content group from the one in the request-time policy, a NOCACHE action is
applied.
If a matching response-time policy has a NOCACHE action, perform a NOCACHE
action.
If there is no matching response-time policy, a CACHE action is applied, unless a
built-in policy overrides this policy.

MAY_NOCACHE For a request-time policy, this setting provisionally prevents caching the response. At
response time, one of following actions is taken:

If no response-time policy matches the request, the final action is NOCACHE.
If a matching response-time policy contains a CACHE action, the final action is
CACHE, unless built-in policies override this policy.
If a matching response-time policy contains a NOCACHE action, the final action is
NOCACHE.
If a matching response-time policy has a CACHE action but does not specify a
content group, the final action is to CACHE the response in the Default content
group, unless built-in policies override this policy.

INVAL Expires cached responses. Depending on how the policy and the content group are
configured, all responses in one or more content groups are expired, or selected objects in
the content group are expired.

Note: You can specify INVAL actions in request-time policies only.

citrix.com 34

Bind Points for a Policy

You can bind the policy to one of the following bind points:

A global policy bank. These are the request-time default, request-time override, response-time default, and
response-time override policy banks, as described in " ."
A virtual server. Policies that you bind to a virtual server are processed after the global override policies
and before the global default policies, as described in " ." Note that when binding a
policy to a virtual server, you bind it to either request-time or response-time processing.
An ad-hoc policy label. A policy label is a name assigned to a policy bank. In addition to the global labels,
the integrated cache has two built-in custom policy labels:

_reqBuiltinDefaults. This policy label, by default, is invoked from the request-time default policy bank.
_resBuiltinDefaults. This policy label, by default, is invoked from the response-time default policy bank.

You can also define new policy labels. Policies bound to a user-defined policy label must be invoked
from within a policy bank for one of the built-in bind points. For more information about creating a policy
label, see " ." For more information about policy label
invocation, see " ."

Important: You should bind a policy with an INVAL action to a request-time override or a response-time override bind point.
To delete a policy, you must first unbind it.

Order of Policy Evaluation

For an advanced policy to take effect, you must ensure that the policy is invoked at some point during the NetScaler
applianceâ€™s processing of traffic. To specify the invocation time, you associate the policy with a bind point. The
following are the bind points, listed in order of evaluation:

Request-time override. If a request matches a request-time override policy, by default request-time policy
evaluation ends and the NetScaler appliance stores the action that is associated with the matching policy.
Request-time load balancing virtual server. If policy evaluation cannot be completed after all the request-
time override policies are evaluated, the NetScaler appliance processes request-time policies that are bound
to load balancing virtual servers. If the request matches one of these policies, evaluation ends and the
NetScaler appliance stores the action that is associated with the matching policy.
Request-time content switching virtual server. Policies that are bound to this bind point are evaluated
after request-time policies that are bound to load balancing virtual servers.
Request-time default. If policy evaluation cannot be completed after all request-time, virtual server-specific
policies are evaluated, the NetScaler appliance processes request-time default policies. If the request
matches a request-time default policy, by default request-time policy evaluation ends and the NetScaler
appliance stores the action that is associated with the matching policy.
Response-time override. Similar to request-time override policy evaluation.
Response-time load balancing virtual server. Similar to request-time virtual server policy evaluation.
Response-time content switching virtual server. Similar to request-time virtual server policy evaluation.
Response-time default. Similar to request-time default policy evaluation.

You can associate multiple policies with each bind point. To control the order of evaluation of the policies associated
with the bind point you configure a priority level. In the absence of any other flow control information, policies are
evaluated according to priority level, starting with the lowest numeric priority value.

After all integrated caching policies have been evaluated, if there are conflicting actions specified in request-time and
response-time policies, the NetScaler appliance determines the final action as specified in the table, "

."Can Associate with an Integrated Caching Policy

Note: Request-time policies for POST data or cookie headers must be invoked during request-time override evaluation,
because the built-in request-time policies in the integrated cache return a NOCACHE action for POST requests and a
MAY_NOCACHE action for requests with cookies. Note that you would associate MAY_CACHE or MAY_NOCACHE actions
with a request-time policy that points to a parameterized content group. The response time policy determines whether the
transaction is stored in the cache.

Order of Policy Evaluation

Order of Policy Evaluation

Configuring a Policy Label in the Integrated Cache
Configuring a Policy Bank for Caching

Actions That You
Can Associate with an Integrated Caching Policy

http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-configpoliciescachinginvalidation-con/ns-IC-actionsassociatedpolicies-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-configpoliciescachinginvalidation-con/ns-IC-bindpointsforpolicy-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-configpoliciescachinginvalidation-con/ns-IC-bindpointsforpolicy-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-configpoliciescachinginvalidation-con/ns-IC-configpolicylabel-tsk.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-configpoliciescachinginvalidation-con/ns-IC-configpolicybankcaching-tsk.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-configpoliciescachinginvalidation-con/ns-IC-actionsassociatedpolicies-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-configpoliciescachinginvalidation-con/ns-IC-actionsassociatedpolicies-con.html

citrix.com 35

Configuring a Policy in the Integrated Cache

You configure new policies to handle data that the built-in policies cannot process. You configure separate policies for
caching, preventing caching from occurring, and for invalidating cached data. Following are the main components of a
policy for integrated caching:

Rule: A logical expression that evaluates an HTTP request or response.
Action: You associate a policy with an action to determine what to do with a request or response that
matches the policy rule.
Content groups: You associate the policy with one or more content groups to identify where the action is to
be performed.

To configure a policy for caching by using the command line interface

At the command prompt, type:

 <policyName> <expression> | | | [add cache policy -rule -action CACHE MAY_CACHE NOCACHE MAY_NOCACHE -
 <contentGroupName>] [|]storeInGroup -undefAction NOCACHE RESET

Examples

> add cache policy image_cache -rule "http.req.url.contains(\"jpg\") || http.req.url.contains(\"jpeg\")" -action CACHE -storeingroup myImages_group -undefaction NOCACHE
> add cache policy bugReportPolicy -rule "http.req.url.query.contains(\"IssuePage\")" -action CACHE -storeInGroup bugReportGroup
> add cache policy my_form_policy -rule "http.req.header(\"Host\")contains(\"my.company.com\") && http.req.method.eq(\"GET\") && http.req.url.query.contains(\"v=7\")" -action CACHE -storeInGroup my_form_event
> add cache policy viewproducts_policy â€“rule "http.req.url.contains(\"viewproducts.aspx\")" â€“action CACHE -storeInGroup Product_Details

To configure a policy for invalidation by using the command line interface

At the command prompt, type:

 <policyName> <expression> INVAL ["<contentGroupName1>[,add cache policy -rule -action -invalObjects
<selectorName1>"]. . .]] | [<contentGroupName1>[, <contentGroupName2>. . .]] [|-invalGroup -undefAction NOCACHE RESET
]

Examples

> add cache policy invalidation_events_policy -rule "http.req.header(\"Host\")contains(\"my.company.com\") && http.req.method.eq(\"GET\") && http.req.url.query.contains(\"v=8\") -action INVAL -invalObjects my_form_event -undefaction NOCACHE
> add cache policy inval_all -rule "http.req.method.eq(\"POST\") && http.req.url.contains(\"jpeg\")" -action INVAL -invalGroups myImages_group myApps_group PDF_group
> add cache policy bugReportInvalidationPolicy -rule "http.req.url.query.contains(\"TransitionForm\")" -action INVAL -invalObjects bugReport
> add cache policy editproducts_policy â€“rule "http.req.url.contains(\"editproducts.aspx\")" â€“action INVAL -invalObjects "Product_Details,batchnum_sel" "Products_In_Depots,batchid_sel"

To configure a policy for caching or invalidation by using the configuration
utility

Navigate to , and create the new policy. > > Optimization Integrated Caching Policies

citrix.com 36

Globally Binding an Integrated Caching Policy

When you globally bind a policy, it is available to all virtual servers on the NetScaler appliance.

To bind an integrated caching policy globally by using the command line
interface

At the command prompt, type:

 <positiveInteger> [| | |bind cache global <policy> -priority -type REQ_OVERRIDE REQ_DEFAULT RES_OVERRIDE
] [<expression>] [<labelType> <labelName>] RES_DEFAULT -gotoPriorityExpression -invoke

Example

> bind cache global myCachePolicy -priority 100 -type req_default

Note that the type argument is optional for globally bound policies, to maintain backward compatibility with policies that
you defined using earlier versions of the NetScaler appliance. If you omit the type, the policy is bound to
REQ_DEFAULT or RES_DEFAULT, depending on whether the policy rule is a response-time or a request-time
expression. If the rule contains both request time and response time parameters, it is bound to RES_DEFAULT.
Following is an example of a binding that omits the type.

> bind cache global myCache Policy 200

To bind an integrated caching policy globally by using the configuration
utility

Navigate to , click , and bind policies by specifying the relevant bind > Optimization Integrated Caching Cache Policy Manager
point and connection type (Request/Response).

citrix.com 37

Binding an Integrated Caching Policy to a Virtual Server

When you bind a policy to a virtual server, it is available only to requests and responses that match the policy and that
flow through the relevant virtual server.

When using the configuration utility, you can bind the policy using the configuration dialog box for the virtual server. This
enables you to view all of the policies from all NetScaler modules that are bound to this virtual server. You can also use
the Policy Manager configuration dialog for the integrated cache. This enables you to view only the integrated caching
policies that are bound to the virtual server.

To bind an integrated caching policy to a virtual server by using the
command line interface

At the command prompt, type:

 <policyName> <positiveInteger> (|bind lb vserver <name>@ -policyName -priority -type REQUEST
) RESPONSE

 <policyName> <positiveInteger> (|bind cs vserver <name>@ -policyName -priority -type REQUEST
) RESPONSE

To bind an integrated caching policy to a virtual server by using the
configuration utility (virtual server method)

 - Navigate to , select the virtual CS Virtual Server > > Traffic Management Content Switching Virtual Servers
server, and bind relevant cache policies.

 - Navigate to , select the virtual LB Virtual Server > > Traffic Management Load Balancing Virtual Servers
server, and bind relevant cache policies.

To bind an integrated caching policy to a virtual server by using the
configuration utility (Policy Manager method)

Navigate to , click , and bind cache policies by specifying the > Optimization Integrated Caching Cache Policy Manager
relevant bind point and connection type.
Note: You can bind cache policies to both LB virtual server and CS virtual server by selecting the appropriate bind point.

citrix.com 38

Example: Caching Compressed and Uncompressed Versions of a File

By default, a client that can handle compression can be served uncompressed responses or compressed responses in
gzip, deflate, compress, and pack200-gzip format. If the client handles compression, an Accept-Encoding:compression
format header is sent in the request. The compression type accepted by the client must match the compression type of
the cached object. For example, a cached .gzip file cannot be served in response to a request with an Accept-Encoding:
deflate header.

A client that cannot handle compression is served a cache miss if the cached response is compressed.

For dynamic caching, you need to configure two content groups, one for compressed data and one for uncompressed
versions of the same data. The following is an example of configuring the selectors, content groups, and policies for
serving uncompressed files from the cache to clients that cannot handle compression, and serving compressed versions
of the same files to client that can handle compression.

add cache selector uncompressed_response_selector http.req.url "http.req.header(\"Host\")"
add cache contentGroup uncompressed_group -hitSelector uncompressed_responst_selector -invalSelector uncomp_resp_sel
add cache policy cache_uncompressed -rule "HTTP.REQ.URL.CONTAINS(\"xyz\") && !HTTP.REQ.HEADER(\"Accept-Encoding\").EXISTS" -action CACHE -storeInGroup uncompressed_group
bind cache global cache_uncompressed -priority 100 -gotoPriorityExpression END -type REQ_OVERRIDE
add cache selector compressed_response_selector HTTP.REQ.URL "HTTP.REQ.HEADER(\"Host\")" "HTTP.REQ.HEADER(\"Accept-Encoding\")"
add cache contentGroup compressed_group -hitSelector compressed_response_selector
add cache policy cache_compressed -rule "HTTP.REQ.URL.CONTAINS(\"xyz\") && HTTP.REQ.HEADER(\"Accept-Encoding\").EXISTS" -action CACHE -storeInGroup compressed_group
bind cache global cache_compressed -priority 200 -gotoPriorityExpression END -type REQ_OVERRIDE

citrix.com 39

Configuring a Policy Bank for Caching

All of the policies that are associated with a particular bind point are collectively known as a policy bank. In addition to
configuring priority levels for policies in a bank, you can modify the order of evaluation order in a bank by configuring
Goto expressions. You can further modify the evaluation order by invoking an external policy bank from within the
current policy bank. You can also configure new policy banks, to which you assign your own labels. Because such
policy banks are not bound to any point in the processing cycle, they can be invoked only from within other policy banks.
For convenience, policy banks whose labels do not correspond to a built-in bind point are called policy labels.

In addition to controlling order of policy evaluation by binding the policy and assigning a priority level, as described in "
 you can establish the flow within a bank of policies by configuring a Goto ",

expression. A Goto expression overrides the flow that is determined by the priority levels. You can also control the
evaluation flow by invoking an external policy bank after evaluating an entry in the current bank. Evaluation always
returns to the current bank after evaluation has completed for the external bank.

The following table summarizes the entries to control evaluation in a policy bank.

Table 1. Entries to Control Evaluation Flow in a Policy Bank

Attribute Specifies

Name The name of a policy, or, to invoke another policy bank without evaluating the policy, the keyword
NOPOLICY.

You can specify NOPOLICY more than once in a policy bank, but you can specify a named policy
only once.

Priority An integer. The lower the integer, the higher the priority.

Goto
Expression

Determines the next policy or policy bank to evaluate. You can provide one of the following
values:

NEXT: Go to the policy with the next higher priority.
END: Stop evaluation.
USE_INVOCATION_RESULT: Applicable if this entry invokes another policy bank. If the
final Goto in the invoked bank has a value of END, evaluation stops. If the final Goto is
anything other than END, the current policy bank performs a NEXT.
Positive number: Priority number of the next policy to be evaluated.
Numeric expression: Expression that produces the priority number of the next policy to
be evaluated.

The Goto can only proceed forward in a policy bank.

Omitting the Goto expression is the same as specifying .END

Invocation
Type

Designates a policy bank type. The value can be one of the following:

Request Vserver: Invokes request-time policies that are associated with a virtual
server.
Response Vserver: Invokes response-time policies that are associated with a virtual
server.
Policy label: Invokes another policy bank, as identified by the policy label for the bank.

Invocation
Name

Name of a virtual server or a policy label, depending on the value that you specified for the
Invocation Type.

The integrated cache has two built-in policy labels, and you can configure additional policy labels:

_reqBuiltInDefaults: This policy label is invoked from the request-time default bind point.
_resBuiltInDefaults: This policy label is invoked from the response-time default bind point.

Note: For information about creating policy labels, see " ."

Binding Policies That Use the Default Syntax

Configuring a Policy Label in the Integrated Cache

http://edocssand.citrix.com/proddocs/topic/ns-main-appexpert-10-1-map/ns-cfa-bind-adv-pol-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-configpoliciescachinginvalidation-con/ns-IC-configpolicylabel-tsk.html

citrix.com 40

1.

2.

1.

2.

To invoke a policy label in a caching policy bank by using the command line
interface

At the command prompt, type:

 <policyName> <priority> [bind cache policylabel <labelName> -policname -priority -gotoPriorityExpression
<gotopriorityExpression>] [<labelType> <labelName>] -invoke

To invoke a policy label in a caching policy bank by using the configuration
utility

Navigate to , click , and specify the relevant bind point > Optimization Integrated Caching Cache policy manager
(Override Global or Default Global) and connection type to view the list of policies bound to this bind point.
If you want to invoke a policy label without evaluating a policy, click . NOPOLICY
Note: To invoke an external policy bank, click the field in the column, and select the type of policy bank Invoke Type
that you want to invoke at this point in the policy bank. This can be a global label or a virtual server bank. In the Invoke

 field, enter the label or virtual server name. See " " for details.Name

To invoke a caching policy label in a virtual server policy bank by using the
command line interface

At the command prompt, type:

 <policyName>|<NOPOLICY-CACHE> <positiveInteger> bind lb vserver <name>@ -policyName -priority -
 <expression> | <labelType> <labelName> gotoPriorityExpression -type REQUEST RESPONSE -invoke

 <policyName>|<NOPOLICY-CACHE> <positiveInteger> bind cs vserver <name> -policyName -priority -
 <expression> | <labelType> <labelName> gotoPriorityExpression -type REQUEST RESPONSE -invoke

For more information, see " ."

To invoke a caching policy label in a virtual server policy bank by using the
configuration utility

Navigate to , select the virtual server, and > > Traffic Management Load Balancing/Contetn Switching Virtual Servers
click .Policies
If you are configuring an existing entry in this bank, skip this step. If you are adding a new policy to this policy bank, or
you want to use the â€œdummyâ€• NOPOLICY entry, click , and do one of the following:Add

To configure a new policy, click and configure the new policy as described in "Cache
."Policy in the Integrated Cache

To invoke a policy bank without processing a policy a rule, select the option.NOPOLICY-CACHE
Note: To invoke an external policy bank, click the field in the column, and select the type of policy bank Invoke Type
that you want to invoke at this point in the policy bank. This can be a global label or a virtual server bank. In the Invoke

 field, enter the label or virtual server name. See " " for details.Name

Entries to Control Evaluation Flow in a Policy Bank

Entries to Control Evaluation Flow in a Policy Bank

Configuring a
Policy in the Integrated Cache

Entries to Control Evaluation Flow in a Policy Bank

http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-configpoliciescachinginvalidation-con/ns-IC-configpolicy-tsk.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-configpoliciescachinginvalidation-con/ns-IC-configpolicybankcaching-tsk.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-configpoliciescachinginvalidation-con/ns-IC-configpolicybankcaching-tsk.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-configpoliciescachinginvalidation-con/ns-IC-configpolicy-tsk.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-configpoliciescachinginvalidation-con/ns-IC-configpolicy-tsk.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-configpoliciescachinginvalidation-con/ns-IC-configpolicybankcaching-tsk.html

citrix.com 41

Configuring a Policy Label in the Integrated Cache

In addition to configuring policies in a policy bank for one of the built-in bind points or a virtual server, you can create
caching policy labels and configure banks of policies for these new labels.

A policy label for the integrated cache can be invoked only from one of the bind points that you can view in the Policy
Manager in the details pane (request override, request default, response override, or response Integrated Caching
default) or the built-in policy labels and . You can invoke a policy label any _reqBuiltinDefaults _resBuiltinDefaults
number of times unlike a policy, which can only be invoked once.

The configuration utility provides an option to rename a policy label. Renaming a policy label does not affect the process
of evaluation of the policies bound to the label.

Note: You can use the NOPOLICY â€œdummyâ€• policy to invoke any policy label from another policy bank. The
NOPOLICY entry is a placeholder that does not process a rule.

To configure a policy label for caching by using the command line interface

At the command prompt, type the following command to create a policy label and verify the configuration:

 (|) add cache policylabel <labelName> -evaluates REQ RES
 show cache policylabel <labelName>

Invoke this policy label from a policy bank. For more information, see " ."

To configure a policy label for caching by using the configuration utility

Navigate to , add a policy label, and bind the cached policies. > > Optimization Integrated Caching Policy Labels
Note: To ensure that the NetScaler ADC processes the policy label at the right time, configure an invocation of this label in
one of the policy banks that are associated with the built-in bind points

To rename a policy label by using the configuration utility

Navigate to , select the policy label, and rename. > > Optimization Integrated Caching Policy Labels

Configuring a Policy Bank for Caching

http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-configpoliciescachinginvalidation-con/ns-IC-configpolicybankcaching-tsk.html

citrix.com 42

1.

2.

Unbinding and Deleting an Integrated Caching Policy and Policy Label

You can unbind a policy from a policy bank, and you can delete it. To delete the policy, you must first unbind it. You can
also remove a policy label invocation and delete a policy label. To delete the policy label, you must first remove any
invocations that you have configured for the label.

You cannot unbind or delete the labels for the built-in bind points (request default, request override, response default,
and response override).

To unbind a global caching policy by using the command line interface

At the command prompt, type:

 unbind cache global <policy>

To unbind a virtual server-specific caching policy by using the command line
interface

At the command prompt, type:

(|) <vserverName> <policyName> (|)unbind lb vserver unbind cs vserver -policyName -type REQUEST RESPONSE

To delete a caching policy by using the command line interface

At the command prompt, type:

 <policyName>rm cache policy

To unbind a caching policy by using the configuration utility

Navigate to , click , and unbind policies by specifying the relevant > Optimization Integrated Caching Cache Policy Manager
bind point and connection type (Request/Response).

To delete a policy label invocation by using the configuration utility

Navigate to , click , and specify the relevant bing point (LB > Optimization Integrated Caching Cache policy manager
virtual server or CS virtual server) and connection type to view the list of cache policies bound to this virtual server.
In the policy column, clear the entry.Invoke

citrix.com 43

Caching Support for Database Protocols

The integrated cache monitors database requests that flow through the CitrixÂ® NetScalerÂ® appliance and caches
them as determined by the cache policies. Users have to configure the cache polices for MYSQL and MSSQL protocols,
because the NetScaler does not provide any default policies for these protocols. When configuring the protocols,
remember that request based policies currently support CACHE and INVAL actions, while response based policies
currently support only NOCACHE action. After configuring the policies, bind them to virtual servers. MYSQL and
MSSQL policies, both request and response, can be bound only to virtual servers

Before creating a cache policy, create a cache content group of type MYSQL or MSSQL. When you create a MYSQL or
MSSQL cache content group, associate at least one hit selector with it. See " " for
setting up cache content groups.

The following example illustrates the procedure for configuring and verifying cache support for SQL protocols.

> enable feature IC
> set cache parameter -memlimit 100
> add cache selector sel1 mssql.req.query.text

> add cache contentgroup cg1 -type "MSSQL" -hitselector "sel1" -invalselector "inval_sel" -relExpiry "500" -maxResSize
 "100"
> add cache policy cp1 -rule "mssql.req.query.command.contains(\"select\")" -action "CACHE" -storeInGroup "cg1"
> add cache policy cp2 -invalObjects "cg1" -rule "mssql.req.query.text.contains(\"insert\")" -action "INVAL"
> add db user user1 -password "Pass1"
> add service svc_sql_1 10.102.147.70 mssql 64834 -healthMonitor "NO" -downstateflush "ENABLED"
> add lb vserver lb_mssql1 mssql 10.102.147.77 1433 -lbmethod "roundrobin"
> bind lb vserver lb_mssql1 svc_sql_1
> bind lb vserver lb_mssql1 -policyName cp1 -type "REQUEST" -priority "2"
> bind lb vserver lb_mssql1 -policyName cp2 -type "REQUEST" -priority "1"

> show cache selector sel1
 Name:sel1
 Expressions:
 1)mssql.req.query.text
> show cache policy cp1
 Name:cp1
 Rule:mssql.req.query.command.contains("select")
 CacheAction:CACHE
 Stored in group: cg1
 UndefAction:Use Global
 Hits:2
 Undef Hits:0
 Policy is bound to following entities
 1) Bound to:
 REQ VSERVER lb_mssql1
 Priority:2
 GotoPriorityExpression: END

Note: The methods for reducing flash crowds, as explained in " ", are not supported for MYSQL and
MSSQL protocols.

Setting Up a Basic Content Group

Reducing Flash Crowds

http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-configselectorsbsccongps-con/ns-IC-setbasiccntgrp-tsk.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-improvecacheperform-con.html

citrix.com 44

Configuring Expressions for Caching Policies and Selectors

A request-time expression examines data in request-time transaction, and a response-time expression examines data in
a response-time transaction. In a policy for caching, if an expression matches data in a request or response, the Citrix
NetScaler appliance takes the action associated with the policy. In a selector, request-time expressions are used to find
matching responses that are stored in a content group.

Before configuring policies and selectors for the integrated cache, you need to know, at minimum, the host names,
paths, and IP addresses that appear in HTTP request and response URLs. And you probably need to know the format
of entire HTTP requests and responses. Programs such as Live HTTP Headers () or http://livehttpheaders.mozdev.org/
HTTPFox () can help you investigate the structure of the HTTP data https://addons.mozilla.org/en-US/firefox/addon/6647
that your organization works with.

Following is an example of an HTTP GET request for a stock quote program:

GET /quote.dll?page=dynamic&mode=data&mode=stock&symbol=CTXS&page=multi&selected=CTXS&random=0.00792039478975548 HTTP/1.1
Host: quotes.mystockquotes.com
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9) Gecko/2008052906 Firefox/3.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate,compress,pack200-gzip
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive
Referer: http://quotes.mystockquotes.com/quote.dll?mode=stock&symbol=CTXS&page=multi&selected=CTXS
Cookie: __qca=1210021679-72161677-10297606

When configuring an expression, note the following limitations:

Table 1. Restrictions on Request-Time and Response-Time Expressions

Expression
Type

Restrictions

Request Do not configure request-time expressions in a policy with a CACHE or NOCACHE action.
Use MAY_CACHE or MAY_NOCACHE instead.

Response Configure response-time expressions in caching policies only.

Selectors can use only request-time expressions.
Do not configure response-time expressions in a policy with an INVAL action.

Do not configure response-time expressions in a policy with a CACHE action and a
parameterized content group. Use the MAY_CACHE action.

Note: For a comprehensive discussion of advanced expressions, see " ."

Expression Syntax

Following are basic components of the syntax:

Separate keywords with periods (.), as follows:

http.req.url

Enclose string values in parentheses and quotes, as follows:

http.req.url.query.contains("this")

When configuring an expression from the command line, you must escape internal quote marks (the quotes
that delimit values in the expression, as opposed to the quotes that delimit the expression). One method is
to use a slash, as followings:

\"abc\"

Policies and Expression

http://docs.citrix.com/en-us/netscaler/10-1/ns-appexpert-con-10/ns-pi-gen-pol-config-wrapper-10-con.html

citrix.com 45

1.
2.

3.

4.

1.
2.

3.

1.

2.

3.

4.
5.

Selector expressions are evaluated in order of appearance, and multiple expressions in a selector definition are joined
by a logical AND. Unlike selector expressions, you can specify Boolean operators and modify the precedence in an
advanced expression for a policy rule.

Configuring an Expression in a Caching Policy or a Selector

Updated: 2014-08-04

Note that on the command line, the syntax for a policy expression is somewhat different from a selector expression. For
a comprehensive discussion of advanced expressions, see " ."

To configure a policy expression by using the command line interface

Start the policy definition as described in " ."
To configure the policy rule, delimit the entire rule in quotes, and delimit string values within the rule in escaped
quotes.

The following is an example:

"http.req.url.contains(\"jpg\")"

To add Boolean values, insert &&, ||, or ! operators.

The following are examples:

"http.req.url.contains(\"jpg\") || http.req.url.contains(\"jpeg\")"
"http.req.url.query.contains(\"IssuePage\")"
"http.req.header(\"Host\")contains(\"my.company.com\") && http.req.method.eq(\"GET\") && http.req.url.query.contains(\"v=7\")"

To configure an order of evaluation for the constituent parts of a compound

"http.req.url.contains(\"jpg\") || (http.req.url.contains(\"jpeg\") && http.req.method.eq(\"GET\"))"

To configure a selector expression by using the command line interface

Start the selector definition as described in " ."
To configure the selector expression, delimit the entire rule in quotes, and delimit string values within the rule in
escaped quotes.

The following is an example:

"http.req.url.contains(\"jpg\")"

You cannot add Boolean values, insert &&, ||, or ! operators. Enter each expression element delimited in quotes.
Multiple expressions in the definition are treated as a compound expression joined by logical ANDs.

The following are examples:

"http.req.url.query.value(\"ProductId\")" "http.req.url.query.value(\"BatchNum\")" "http.req.url.query.value(\"depotLocation\")"

To configure a policy or selector expression by using the configuration utility

Start the policy or selector definition as described in "
" or " ."configuration utility

In the field, you can either manually type the default syntax by clicking or create Expression Switch to Classic Syntax
new expression using . Expression Editor
To insert an operator between two parts of a compound expression, click the Operators button and select the operator
type. The following is an example of a configured expression with a Boolean OR (signaled by double vertical bars, ||):
Click drop-down to insert the commonly used expressions.Frequently Used Expressions
To test the expression, click the . In the dialog box, select the that matches Evaluate Expression Evaluator Flow Type
the expression. In the data field, paste the HTTP request or response that you hope to parse using the expression,
and click .Evaluate

Policies and Expressions

Globally Binding an Integrated Caching Policy

About Content Groups

To configure a policy for caching or invalidation by using the
configuration utility To configure a selector by using the configuration utility

http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-configpoliciescachinginvalidation-con/ns-IC-configpolicy-tsk.html
http://docs.citrix.com/en-us/netscaler/10-1/ns-appexpert-con-10/ns-pi-gen-pol-config-wrapper-10-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-configpoliciescachinginvalidation-con/ns-IC-globallybindpolicy-tsk.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-configselectorsbsccongps-con/ns-IC-aboutcontentgrp-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-configpoliciescachinginvalidation-con/ns-IC-configpolicy-tsk.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-configpoliciescachinginvalidation-con/ns-IC-configpolicy-tsk.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-configselectorsbsccongps-con/ns-IC-configselector-tsk.html

citrix.com 46

Displaying Cached Objects and Cache Statistics

You can view particular cached objects, and you can view summary statistics on cache hits, misses, and memory
usage. The statistics provide insight on the amount of data that is being served from the cache, what items are
responsible for the largest performance benefit, and what you can tune to improve cache performance.

This section includes the following details:

Viewing Cached Objects

Viewing Cache Statistics

Viewing Cached Objects

Updated: 2014-08-04

After enabling caching, you can view details for cached objects. For example, you can view the following items:

Response sizes and header sizes
Status codes
Content groups
ETag, Last-Modified, and Cache-Control headers
Request URLs
Hit parameters
Destination IP addresses
Request and response times

To view a list of cached objects by using the command line interface

At the command prompt, type:

 show cache object
Table 1. Properties of Cached Objects

Properties Specifies

Response
size (bytes)

The size of the response header and body.

Response
header size
(bytes)

The size of the header portion of the response.

Response
status code

The status code sent with the response.

ETag The ETag header inserted in the response. Typically, this header indicates whether the
response has changed recently.

Last-Modified The Last-Modified header inserted in the response. This header indicates the date that the
response was last changed.

Cache-
Control

The Cache-Control header inserted in the response.

Date The Date header that indicates when the response was sent.

Contentgroup The content group where the response is stored.

Viewing Cached Objects
Finding Particular Cached Responses
Viewing Cache Statistics

http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-displaycachedobjectandstats-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-displaycachedobjectandstats-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-displaycachedobjectandstats-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-displaycachedobjectandstats-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-displaycachedobjectandstats-con.html

citrix.com 47

Complex
match

If this object was cached on the basis of parameterized values, this field value is YES.

Host The host specified in the URL that requested this response.

Host port The listen port for the host specified in the URL that requested this response.

URL The URL issued for the stored response.

Destination
IP

The IP address of the server from which this response was fetched.

Destination
port

The listen port for the destination server.

Hit
parameters

If the content group that stores the response uses hit parameters, they are listed in this field.

Hit selector If this content group uses a hit selector, it is listed in this field.

Inval selector If this content group uses an invalidation selector, it is listed in this field.

Selector
Expressions

If this content group uses a selector, this field displays the expression that defines the
selection rule.

Request time The time in milliseconds since the request was issued.

Response
time

The time in milliseconds since the cache started to receive the response.

Age Amount of time the object has been in the cache.

Expiry Amount of time after which the object is marked as expired.

Flushed Whether the response has been flushed after expiry.

Prefetch If Prefetch has been configured for this content group, the amount of time before expiry during
which the object is fetched from the origin. Prefetch does not apply to negative objects (for
example, 404 "object not found" responses).

Current
readers

Approximately the current number of hits being served. When a response with a Content-
Length header object is being downloaded, the current misses and the current readers values
are each typically 1. When a chunked response object is being downloaded, the current
misses value is typically 1, but the current readers value is typically 0, because the chunked
response that is served to the client does not come from the integrated caching buffers.

Current
misses

The current number of requests that resulted in a cache miss and fetching from the origin
server. This value is typically 0 or 1. If Poll Every Time is enabled for a content group, the
count can be greater than 1.

Hits The number of cache hits for this object.

Misses The number of cache misses for this object.

citrix.com 48

Compression
format

The type of compression applied to this object. Compression formats include gzip, deflate,
compress, and pack200-gzip.

HTTP version
in response

The version of HTTP that was used to send the response.

Weak etag
present in
response

Strong etag headers change if the bits of an entity change. Strong headers are based on the
octet values of an object. Weak etag headers change if the meaning of an entity changes.
Weak etag values are based on semantic identity. Weak etags values start with a "W."

Negative
marker cell

A marker object is cacheable, but it does not yet meet all the criteria for being cached. For
example, the object may exceed the maximum response size for the content group. A marker
cell is created for objects of this type. The next time a user sends a request for this object, a
cache miss is served.

Reason
marker
created

The reason a marker cell was created (for example, â€œWaiting for minhit,â€• â€œContent-
length response data is not in group size limitâ€•).

Auto poll
every time

If the integrated cache receives an already expired 200 OK response with validators (either
the Last-Modified or the ETag response headers) it stores the response and marks it as Auto-
PET (automatically poll every time).

NetScaler
Etag inserted
in response

A variation of the ETag header generated by the NetScaler appliance. A value of YES
appears if the NetScaler inserts an Etag in the response.

Full response
present in
cache

Indicates whether this is a complete response.

Destination
IP verified by
DNS

Indicates whether DNS resolution was performed when storing the object.

Object stored
through a
cache
forward proxy

Indicates whether this response was stored due to a forward proxy that is configured in the
integrated cache.

Object is a
Delta basefile

A response that is delta-compressed.

Waiting for
minhits

Indicates whether this content group requires a minimum number of origin server hits before
caching a response.

Minhit count If this content group requires a minimum number of origin server hits before caching an object,
this field displays a count of the number of hits received so far.

HTTP
Request
Method

The method, GET or POST, used in the request that obtained this object.

Stored by
policy

citrix.com 49

The name of the caching policy that caused this object to be stored. A value of NOT
AVAILABLE indicates that the policy has been deactivated or deleted. A value of NONE
indicates that the object did not match a visible policy, but was stored according to internal
criteria for caching.

Application
firewall
metadata
exists

This parameter is used when the application firewall and the integrated cache are both
enabled. The application firewall analyzes the contents of a response page, stores its
metadata (for example, URLs and forms contained in page), and exports the metadata with
the response to the cache. The cache stores the page and the metadata, and when the cache
serves the page, it sends the metadata back to the requestâ€™s session.

HTTP callout
object, name,
type,
response

These cells indicate whether this data was stored as a result of an HTTP Callout expression,
and provide information about various aspects of the callout and the corresponding response.
For more information about HTTP callouts, see " ".

To view cached objects by using the configuration utility

To view cached objects by using the configuration utility

Navigate to . You can view all the cached objects and sort them > > Optimization Integrated Caching Cache Objects
accordingly as per your requirement.

Finding Particular Cached Responses

Updated: 2014-08-08

You can find individual items in the cache based on search criteria. There are different methods for finding cached
items, depending on whether the content group that contains the data uses hit and invalidation selectors, as follows:

If the content group uses selectors, you can only conduct the search using the Locator ID for the cached
item.
If the content group does not use selectors, you conduct the search using criteria such as URL, host,
content group name, and so on.

When searching for a cached response, you can locate some items by URL and host. If the response is in a content
group that uses a selector, you can find it only by using a Locator number (for example, 0x00000000ad7af00000050).
To save a Locator number for later use, right-click the entry and select . For more information about selectors, see Copy
" ."

To display cached responses in content groups that do not have a selector by using the command
line interface

At the command prompt, type:

[<positiveInteger>] | [(<URL> (<hostName> [<port>] [show cache object -locator -url -host -port -groupName
<contentGroupName>] [|])) | [<positive integer>] | <contentGroupName> | -httpMethod GET POST -httpStatus -group -

 (|) | (|)]ignoreMarkerObjects ON OFF -includeNotReadyObjects ON OFF

To display cached responses in content groups that have a selector by using the command line
interface

At the command prompt, type:

 <locatorString> (|) | (|) | [show cache object -locator MarkerObjects ON OFF -includeNotReadyObjects ON OFF -httpStatus
<positive integer>]

To display cached responses in content groups that do not have a selector by using the
configuration utility

Navigate to , click , and set the search criteria to view the required > > Optimization Integrated Caching Cache Objects Search
cached response.

If you have not yet configured any content groups, all of the objects are in the group.Default

HTTP Callouts

Configuring Selectors and Basic Content Groups

http://docs.citrix.com/en-us/netscaler/10-1/ns-appexpert-con-10/netscaler-http-callouts-gen-wrapper-10-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-configselectorsbsccongps-con.html

citrix.com 50

To display cached responses in content groups that have a selector by using the configuration
utility

Navigate to , click , and set the selector search criteria to view the > > Optimization Integrated Caching Cache Objects Search
required cached response.

Viewing Cache Statistics

Updated: 2013-10-28

The following table summarizes the detailed cache statistics that you can view.

Table 2. Integrated Cache Statistics

Counter Specifies

Hits Responses that are found in and served from the integrated cache. Includes static objects
such as image files, pages with status codes 200, 203, 300, 301, 302, 304, 307, 403, 404,
410, and responses that match a user-defined policy with a CACHE action..

Misses Intercepted HTTP requests where the response was ultimately fetched from origin server.

Requests Total cache hits plus total cache misses.

Non-304 hits If the user requests an item more than once, and the item in the cache is unchanged since the
last time the NetScaler appliance served it, the NetScaler appliance serves a 304 response
instead of the cached object.

This statistic indicates how many items the NetScaler appliance served from the cache,
excluding 304 responses.

304 hits Number of 304 (object not modified) responses the NetScaler appliance served from the
cache.

304 hit ratio
(%)

Percentage of 304 responses that the NetScaler appliance served, relative to other
responses.

Hit ratio (%) Percentage of responses that the NetScaler appliance served from the cache (cache hits)
relative to responses that could not be served from the cache.

Origin
bandwidth
saved (%)

An estimate of the processing capacity that the NetScaler appliance saved on the origin
server due to serving responses from the cache.

Bytes served
by the
NetScaler

Total number of bytes that the NetScaler appliance served from the origin server and the
cache.

Bytes served
by cache

Total number of bytes that the NetScaler appliance served from the cache.

Byte hit ratio
(%)

Percentage of data that the NetScaler appliance served from the cache, relative to all of the
data in all served responses.

Compressed
bytes from
cache

Amount of data, in bytes, that the NetScaler appliance served in compressed form.

citrix.com 51

Storable
misses

If the NetScaler appliance does not find a requested object in the cache, it fetches the object
from the origin server. This is known as a cache miss. A storable cache miss can be stored in
the cache.

Non-storable
misses

A non-storable cache miss cannot be stored in the cache.

Misses All cache misses.

Revalidations Max-Age setting in a Cache-Control header determines, in number of seconds, when an
intervening cache must revalidate the content with the integrated cache before serving it to
the user.

For more information, see " ."

Successful
revalidations

Number of re-validations that have been performed.

For more information, see " ."

Conversions
to conditional
req

A user-agent request for a cached PET object is always converted to a conditional request
and sent to the origin server.

For more information, see " ."

Storable miss
ratio (%)

Storable cache misses as a percentage of non-storable cache misses.

Successful
reval ratio
(%)

Successful revalidations as a percentage of all revalidation attempts.

For more information, see " ."

Expire at last
byte

Number of times that the cache expired content immediately after receiving the last body byte.
Only applicable to positive responses, as described in the table " ."

For more information, see " ."

Flashcache
misses

If you enable Flash Cache, the cache allows only one request to reach the server, eliminating
flash crowds. This statistic indicates the number of Flash Cache requests that were cache
misses.

For more information, " ."

Flashcache
hits

Number of Flash Cache requests that were cache hits.

For more information, see " ."

Parameterized
inval requests

Requests that match a policy with an invalidation (INVAL) action and a content group that
uses an invalidation selector or parameters to selectively expire cached objects in the group.

Full inval
requests

Requests that match an invalidation policy where the invalGroups parameter is configured
and expires one or more content groups.

Inval
requests

Requests that match an invalidation policy and result in expiration of specific cached
responses or entire content groups.

Parameterized
requests

Number of cache requests that were processed using a policy with a parameterized content
group.

Inserting a Cache-Control Header

Inserting a Cache-Control Header

Polling the Origin Server Every Time a Request Is Received

Inserting a Cache-Control Header

Cache Hits and Misses

Example of Performance Optimization

Queuing Requests to the Cache

Queuing Requests to the Cache

http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-confcookiesheaderpolling-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-confcookiesheaderpolling-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-confcookiesheaderpolling-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-confcookiesheaderpolling-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-howICwork-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-improvecacheperform-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-improvecacheperform-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-improvecacheperform-con.html

citrix.com 52

Parameterized
non-304 hits

Number of cache requests that were processed using a policy with a parameterized content
group, where full cached response was found, and the response was not a 304 (object not
updated) response.

Parameterized
304 hits

Number of cache requests that were processed using a policy with a parameterized content
group, where the cached object was found, and the object was a 304 (object not updated)
response.

Total
parameterized
hits

Number of cache requests that were processed using a policy with a parameterized content
group, where the cached object was found.

Parameterized
304 hit ratio
(%)

Percentage of 304 (object not updated) responses that were found using a parameterized
policy, relative to all cache hits.

Poll every
time requests

If Poll Every Time is enabled, the NetScaler appliance always consults the origin server
before serving a stored object.

For more information, see " ."

Poll every
time hits

Number of times a cache hit was found using the Poll Every Time method.

For more information, see " ."

Poll every
time hit ratio
(%)

Percentage of cache hits using the Poll Every Time method, relative to all searches for
cached objects using Poll Every Time.

For more information, see " ."

Maximum
memory (KB)

Maximum amount of memory in the NetScaler appliance that is allocated to the cache. For
more information, see " ."

Maximum
memory
active value
(KB)

Maximum amount of memory (active value) that will be set after the memory is actually
allocated to the cache. For more information, see "

."Feature of a NetScaler Appliance for various Scenarios

Utilized
memory (KB)

Amount of memory that is actually being used.

Memory
allocation
failures

Number of failed attempts to utilize memory for the purpose of storing a response in the
cache.

Largest
response so
far

Largest response in bytes found in either the cache or the origin server and sent to the client.

Cached
objects

Number of objects in the cache, including responses that have not yet been fully downloaded
and responses that have been expired but not yet flushed.

Marker
objects

Marker objects are created when a response exceeds the maximum or minimum response
size for the content group, or has not yet received the minimum number of hits for the content
group.

Polling the Origin Server Every Time a Request Is Received

Polling the Origin Server Every Time a Request Is Received

Polling the Origin Server Every Time a Request Is Received

Configuring Global Attributes for Caching

How to Configure the Integrated Caching
Feature of a NetScaler Appliance for various Scenarios

http://support.citrix.com/article/CTX124553
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-confcookiesheaderpolling-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-confcookiesheaderpolling-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-confcookiesheaderpolling-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-settingup-con.html
http://support.citrix.com/article/CTX124553
http://support.citrix.com/article/CTX124553

citrix.com 53

1.
2.
3.

1.
2.
3.

Hits being
served

Number of hits that have been served from the cache.

Misses being
handled

Responses that were fetched from the origin server, stored in the cache, and then served.
Should approximate the number for storable misses. Does not include non-storable misses.

To view summary cache statistics by using the command line interface

At the command prompt, type:

 stat cache

To view specific cache statistics by using the command line interface

At the command prompt, type:

 [] [<positiveInteger>] [<inputFilename>] stat cache -detail -fullValues -ntimes -logFile

To view summary cache statistics by using the configuration utility

Click the tab at the top of the page.Dashboard
Scroll down to the section of the window.Integrated Caching
To see detailed statistics, click the link at the bottom of the table.More...

To view specific cache statistics by using the configuration utility

Click the tab at the top of the page.Reporting
Under , expand , and then click the report with the statistics you want to view.Built-In Reports Integrated Cache
To save the report as a template, click and name the report. The saved report appears under Save As Custom Reports
.

citrix.com 54

1.
2.

Improving Cache Performance

You can improve the performance of integrated cache, including handling simultaneous requests for the same cached
data, avoiding delays that are associated with refreshing cached responses from the origin server, and ensuring that a
response is requested often enough to be worth caching.

This section includes the following details:

Caching a Response after a Client Halts a Download
Requiring a Minimum Number of Server Hits before Caching
Example of Performance Optimization

Reducing Flash Crowds

Updated: 2015-05-20

Flash crowds occur when many users simultaneously request the same data. All of the requests in a flash crowd can
become cache misses if you configured the cache to serve hits only after the entire object is downloaded.

The following techniques can reduce or eliminate flash crowds:

PREFETCH: Refreshes a positive response before it expires to ensure that it never becomes stale or
inactive.

For more information, see " ."

Cache buffering: Starts serving a response to multiple clients as soon as it receives the response header
from the origin server, rather than waiting for the entire response to be downloaded.

The only limit on the number of clients that can download a response simultaneously is the available
system resources.

The Citrix NetScaler appliance downloads and serves responses even if the client that initiated the
download halts before the download is complete. If the size of the response exceeds the cache size or
if the response is chunked, the cache stops storing the response, but service to the clients is not
disrupted.

Flash Cache: Flash Cache queues requests to the cache, and allows only one request to reach the server
at a time.

For more information, see " ."

Refreshing a Response Before Expiration

To ensure that a cached response is fresh whenever it is needed, the PREFETCH option refreshes a response before
its calculated expiration time. The prefetch interval is calculated after receiving the first client request. From that point
onward, the NetScaler appliance refreshes the cached response at a time interval that you configure in the PREFETCH
parameter.

This setting is useful for data that is updated frequently between requests. It does not apply to negative responses (for
example, 404 messages).

To configure prefetch for a content group by using the command line interface

At the command prompt, type:

 YES [<seconds> | <milliseconds>] [set cache contentgroup <name> -prefetch -prefetchPeriod -prefetchPeriodMilliSec -
 <positiveInteger>] prefetchMaxPending

To configure prefetch for a content group by using the configuration utility

Navigate to , and select the content group. > > Optimization Integrated Caching Content Groups
On tab, in the group, select option, and specify the values in and Others Flash Crowd and Prefetch Prefetch Interval

 text boxes.Maximum number of pending prefetches

Queuing Requests to the Cache

Reducing Flash Crowds
Caching a Response after a Client Halts a Download
Requiring a Minimum Number of Server Hits before Caching
Example of Performance Optimization

Refreshing a Response Prior to Expiration

Queuing Requests to the Cache

http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-improvecacheperform-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-improvecacheperform-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-improvecacheperform-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-improvecacheperform-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-improvecacheperform-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-improvecacheperform-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-improvecacheperform-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-improvecacheperform-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-improvecacheperform-con.html

citrix.com 55

1.
2.

1.
2.

1.
2.

The Flash Cache option queues requests that arrive simultaneously (a flash crowd), retrieves the response, and
distributes it to all the clients whose requests are in the queue. If, during this process, the response becomes non-
cacheable, the NetScaler appliance stops serving the response from the cache and instead serves the origin server's
response to the queued clients. If the response is not available, the clients receive an error message.

Flash Cache is disabled by default. You cannot enable Poll Every Time (PET) and Flash Cache on the same content
group.

One disadvantage of Flash Cache is if the server replies with an error (for example, a 404 that is quickly remedied), the
error is fanned out to the waiting clients.

Note: If Flash Cache is enabled, in some situations the NetScaler appliance is unable to correctly match the Accept-Encoding
header in the client request with the Content-Encoding header in the response. The NetScaler appliance can assume that
these headers match and mistakenly serve a hit. As a work-around, you can configure Integrated Caching policies to disallow
serving hits to clients that do not have an appropriate Accept-Encoding header.

To enable Flash Cache by using the command line interface

At the command prompt, type:

 <contentGroupName> yesset cache contentgroup -flashcache

To enable Flash Cache by using the configuration utility

Navigate to , and select the content group. > > Optimization Integrated Caching Content Groups
On tab, in the group, select option.Others Flash Crowd and Prefetch Prefetch

Caching a Response after a Client Halts a Download

Updated: 2014-08-08

You can set the Quick Abort parameter to continue caching a response, even if the client halts a request before the
response is in the cache.

If the downloaded response size is less than or equal to the Quick Abort size, the NetScaler appliance stops
downloading the response. If you set the Quick Abort parameter to 0, all downloads are halted.

To configure quick abort size by using the command line interface

At the command prompt, type:

 <integerInKBytes> set cache contentgroup <name> -quickAbortSize

To configure quick abort size by using the configuration utility

Navigate to , and select the content group. > > Optimization Integrated Caching Content Groups
On tab, set the relevant value in text box.Memory Quick Abort: Continue caching if more than

Requiring a Minimum Number of Server Hits before Caching

Updated: 2015-05-19

You can configure the minimum number of times that a response must be found on the origin server before it can be
cached. You should consider increasing the minimum hits if the cache memory fills up quickly and has a lower-than-
expected hit ratio.

The default value for the minimum number of hits is 0. This value caches the response after the first request.

To configure the minimum number of hits that are required before caching by using the command
line interface

At the command prompt, type:

 <positiveInteger> set cache contentgroup <name> -minhits

To configure the minimum number of hits that are required before caching by using the
configuration utility

Navigate to , and select the content group. > > Optimization Integrated Caching Content Groups
On tab, set the relevant value in text box.Memory Do not cache, if hits are less than

citrix.com 56

1.

2.

3.

Example of Performance Optimization

Updated: 2013-10-28

In this example, a client accesses a stock quote. Stock quotes are highly dynamic. You configure the integrated cache
to serve the same stock quote to concurrent clients without sending multiple requests to the origin server. The stock
quote expires after it is downloaded to all of the clients, and the next request for a quote for the same stock is fetched
from the origin server. This ensures that the quote is always up to date.

The following task overview describes the steps to configure the cache for the stock quote application.

Task overview: Configuring caching for a stock quote application

Create a content group for stock quotes.

For more information, see " ."

Configure the following for this content group:

On the tab, select the check box.Expiry Method Expire after complete response received
On the tab, select the check box, and click .Others Flash Cache Create

Add a cache policy to cache the stock quotes.

For more information, see " ."

Configure the following for the policy:

In the and lists, select and select the group that you defined in the Action Store in Group CACHE
previous step.
Click , and in the dialog box configure an expression that identifies stock quote Add Add Expression
requests, for example:

http.req.url.contains("cgi-bin/stock-quote.pl")

Activate the policy.

For more information, see " ." In this example, you bind this policy
to request-time override processing and set the priority to a low value.

About Content Groups

Configuring a Policy in the Integrated Cache

Globally Binding an Integrated Caching Policy

http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-configselectorsbsccongps-con/ns-IC-aboutcontentgrp-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-configpoliciescachinginvalidation-con/ns-IC-configpolicy-tsk.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-configpoliciescachinginvalidation-con/ns-IC-globallybindpolicy-tsk.html

citrix.com 57

Configuring Cookies, Headers, and Polling

This section describes the procedures to configure how the cache manages cookies, HTTP headers, and origin server
polling, including modifying default behavior that causes the cache to diverge from documented standards, overriding
HTTP headers that might cause cacheable content to not be stored in the cache, and configuring the cache to always
poll the origin for updated content under specialized circumstances.

For details, see the following sections:

Divergence of Cache Behavior from the Standards
Removing Cookies from a Response
Inserting HTTP Headers at Response Time
Ignoring Cache-Control and Pragma Headers in Requests
Polling the Origin Server Every Time a Request Is Received
PET and Client-Specific Content
PET and Authentication, Authorization, and Auditing

Divergence of Cache Behavior from the Standards

Updated: 2013-10-28

By default, the integrated cache conforms to the following standards:

RFC 2616, â€œHypertext Transfer Protocol HTTP/1.1â€•
The caching behaviors described in RFC 2617, â€œHTTP Authentication: Basic and Digest Access
Authenticationâ€•
The caching behavior described in RFC 2965, â€œHTTP State Management Mechanismâ€•

The built-in policies and the Default content group attributes ensure conformance with most of these standards.

The default integrated cache behavior diverges from the specifications as follows:

There is limited support for the Vary header.

By default, any response containing a Vary header is considered to be non-cacheable unless it is
compressed. A compressed response contains Content-Encoding: gzip, Content-

 and is cacheable even if it Encoding: deflate, or Content-Encoding: pack200-gzip
contains the header.Vary: Accept-Encoding

The integrated cache ignores the values of the headers Cache-Control: no-cache and Cache-
.Control: private

For example, a response that contains is treated Cache-Control: no-cache=â€•Set-Cookieâ€•
as if the response contained . By default, the response is not cached.Cache-Control: no-cache

An image (Content-Type = image/*) is always considered cacheable even if an image response contains Set-
Cookie or Set-Cookie2 headers, or if an image request contains a Cookie header.

The integrated cache removes Set-Cookie and Set-Cookie2 headers from a response before caching it.
This diverges from RFC 2965. You can configure RFC-compliant behavior as follows:

add cache policy rfc_compliant_images_policy -rule "http.res.header.set-cookie2.exists || http.res.header.set-cookie.exists" -action NOCACHE
bind cache global rfc_compliant_images_policy -priority 100 -type REQ_OVERRIDE

The following Cache-Control headers in a request force an RFC-compliant cache to reload a cached
response from the origin server:

Cache-control: max-age=0
Cache-control: no-cache

To guard against Denial of Service attacks, this behavior is not the default. For more information, see "
."

Divergence of Cache Behavior from the Standards
Removing Cookies from a Response
Inserting HTTP Headers at Response Time
Ignoring Cache-Control and Pragma Headers in Requests
Polling the Origin Server Every Time a Request Is Received
PET and Client-Specific Content
PET and Authentication, Authorization, and Auditing

Inserting a Cache-Control Header

http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-confcookiesheaderpolling-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-confcookiesheaderpolling-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-confcookiesheaderpolling-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-confcookiesheaderpolling-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-confcookiesheaderpolling-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-confcookiesheaderpolling-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-confcookiesheaderpolling-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-confcookiesheaderpolling-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-confcookiesheaderpolling-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-confcookiesheaderpolling-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-confcookiesheaderpolling-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-confcookiesheaderpolling-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-confcookiesheaderpolling-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-confcookiesheaderpolling-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-confcookiesheaderpolling-con.html

citrix.com 58

1.
2.

By default, the caching module considers a response to be cacheable unless a response header states
otherwise.

To make this behavior RFC 2616 compliant, set and to 0 for -weakPosRelExpiry -weakNegResExpiry
all content groups.

Removing Cookies from a Response

Updated: 2014-08-12

Cookies are often personalized for a user, and typically should not be cached. The Remove Response Cookies
parameter removes Set-Cookie and Set-Cookie2 headers before caching a response. By default, the Remove
Response Cookies option for a content group prevents caching of responses with Set-Cookie or Set-Cookie2 headers.

Note that when images are cached, the built-in behavior is to remove the Set-Cookie and Set-Cookie2 headers before
caching, no matter how the content group is configured.

Note: Citrix recommends that you accept the default Remove Response Cookies for every content group that stores
embedded responses, for example, images.

To configure Remove Response Cookies for a content group by using the command line interface

At the command prompt, type:

 YES set cache contentgroup <name> -removeCookies

To configure Remove Response Cookies for a content group by using the configuration utility

Navigate to , and select the content group. > > Optimization Integrated Caching Content Groups
On tab, in the group, select option.Others Settings Remove response cookies

Inserting HTTP Headers at Response Time

Updated: 2014-08-12

The integrated cache can insert HTTP headers in responses that result from cache hits. The CitrixÂ® NetScalerÂ®
appliance does not alter headers in responses that result from cache misses.

The following table describes headers that you can insert in a response.

Table 1. Different HTTP Headers You Can Insert in a Response That Is Served from the Cache

Header Specifies

Age Provides the age of the response in seconds, calculated from the time the response was
generated at the origin server.

By default, the cache inserts an Age header for every response that is served from the cache.

Via Lists protocols and recipients between the start and end points for a request or a response.
The NetScaler appliance inserts a Via header in every response that it serves from the cache.
The default value of the inserted header is â€œNS-CACHE- :last octet of the NetScaler IP 9.2
address.â€•

For more information, see " ."

ETag The cache supports response validation using Last-Modified and ETag headers to determine
if a response is stale.

The cache inserts an ETag in a response only if it caches the response and the origin server
has not inserted its own ETag header.

The ETag value is an arbitrary unique number. The ETag value for a response changes if it is
refreshed from the origin server, but it stays the same if the server sends a 304 (object not
updated) response.

Origin servers typically do not generate validators for dynamic content because dynamic
content is considered non-cacheable. You can override this behavior. With ETag header

Configuring Global Attributes for Caching

http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-settingup-con.html

citrix.com 59

1.
2.

1.
a.

b.

insertion, the cache is permitted to not serve full responses. Instead, the user agent is
required to cache the dynamic response sent by the integrated cache the first time. To force a
user agent to cache a response, you configure the integrated cache to insert an ETag header
and replace the origin-provided Cache-Control header.

Cache-
Control

The NetScaler appliance typically does not modify cacheability headers in responses that is
serves from the origin server. If the origin server sends a response that is labeled as non-
cacheable, the client treats the response as non-cacheable even if the NetScaler appliance
caches the response.

To cache dynamic responses in a user agent, you can replace Cache-Control headers from
the origin server. This applies only to user agents and other intervening caches. They do not
affect the integrated cache.

For more information, see " ."

Inserting an Age, Via, or ETag Header

The following procedures describe how to insert Age, Via, and ETag headers.

To insert an Age, Via, or Etag header by using the command line interface

At the command prompt, type:

 <name> set cache contentgroup -insertVia YES -insertAge YES -insertETag YES

To insert an Age, Via, or Etag header by using the configuration utility

Navigate to , and select the content group. > > Optimization Integrated Caching Content Groups
On tab, in the group, select the options, as appropriate. Others HTTP Header Insertions Via, Age, or ETag

The values for the other header types are calculated automatically. Note that you configure the value in the Via
main settings for the cache.

Inserting a Cache-Control Header

When the integrated cache replaces a Cache-Control header that the origin server inserted, it also replaces the Expires
header. The new Expires header contains an expiration time in the past. This ensures that HTTP/1.0 clients and caches
(that do not understand the Cache-Control header) do not cache the content.

To insert a Cache-Control header by using the command line interface

At the command prompt, type:

 <name> <value>set cache contentgroup -cacheControl

To insert a Cache-Control header by using the configuration utility

Navigate to , and > > Optimization Integrated Caching Content Groups
Click tab, clear the heuristic and default expiry settings and set the relevant value in Expiry Method Expire

 text box.content after
Click tab and type the header you want to insert in the text box. Alternatively, click Others Cache-Control

to set the Cache-Control directives in cached responses.Configure

Ignoring Cache-Control and Pragma Headers in Requests

Updated: 2014-08-12

By default, the caching module processes Cache-Control and Pragma headers. The following tokens in Cache-Control
headers are processed as described in RFC 2616.

max-age
max-stale
only-if-cached
no-cache

A Pragma: no-cache header in a request is treated in the same way as a Cache-Control: no-cache header.

Inserting a Cache-Control Header

http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-confcookiesheaderpolling-con.html

citrix.com 60

1.
2.

1.

2.

3.

4.

If you configure the caching module to ignore Cache-Control and Pragma headers, a request that contains a Cache-
Control: No-Cache header causes the NetScaler appliance to retrieve the response from the origin server, but the
cached response is not updated. If the caching module processes Cache-Control and Pragma headers, the cached
response is refreshed.

The following table summarizes the implications of various settings for these headers and the Ignore Browser's Reload
Request setting.

Table 2. Outcome of Settings for Ignoring Reload Requests, Cache-Control, and Pragma Headers

Setting for Ignore
Cache-Control and
Pragma Headers

Setting for Ignore
Browser's Reload
Request

Outcome

Yes Yes or No Ignore the Cache-Control and Pragma headers from the
client, including the Cache-Control: no-cache directive.

No Yes The Cache-Control: no-cache header produces a cache
miss, but a response that is already in the cache is not
refreshed.

No No A request that contains a Cache-Control: no-cache
header causes a cache miss and the stored response is
refreshed.

To ignore Cache-Control and Pragma headers in a request by using the command line interface

At the command prompt, type:

 <name> YESset cache contentgroup -ignoreReqCachingHdrs

To ignore browser reload requests by using the command line interface

At the command prompt, type:

 <name> NO set cache contentgroup -ignoreReloadReq

Note that by default, the -ignoreReloadReq parameter is set to YES.

To ignore Cache-Control and Pragma headers in a request by using the configuration utility

Navigate to , and select the content group. > > Optimization Integrated Caching Content Groups
On tab, in the group, select option.Others Settings Ignore Cache-control and Pragma Headers in Requests

Example of a Policy to Ignore Cache-Control Headers

In the following example, you configure a request-time override policy to cache responses that contain Content-type:
image/* regardless of the Cache-Control header in the response.

To configure a request-time override policy to cache all responses with image/*

Flush the cache using the option. Invalidate All

For more information, see " ."

Configure a new cache policy, and direct the policy to a particular content group. For more information, see "
."

Ensure the content group that the policy uses is configured to ignore Cache-Control headers, as described in "
."Cache-Control and Pragma Headers in Requests

Bind the policy to the request-time override policy bank.

For more information, see " ."

Polling the Origin Server Every Time a Request Is Received

Updated: 2014-08-12

Flushing Responses in a Content Group

Configuring a Policy in the Integrated Cache
Ignoring

Cache-Control and Pragma Headers in Requests

Globally Binding an Integrated Caching Policy

http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-confcookiesheaderpolling-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-configselectorsbsccongps-con/ns-IC-configperiodicexpircontentgrp-tsk.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-configpoliciescachinginvalidation-con/ns-IC-configpolicy-tsk.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-confcookiesheaderpolling-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-confcookiesheaderpolling-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con/ns-IC-configpoliciescachinginvalidation-con/ns-IC-globallybindpolicy-tsk.html

citrix.com 61

You can configure the NetScaler appliance to always consult the origin server before serving a stored response. This is
known as Poll Every Time (PET). When the NetScaler appliance consults the origin server and the PET response has
not expired, a full response from the origin server does not overwrite cached content. This property is useful when
serving client-specific content.

After a PET response expires, the NetScaler appliance refreshes it when the first full response arrives from the origin
server.

The Poll Every Time (PET) function works as follows:

For a cached response that has validators in the form of an ETag or a Last-Modified header, if the response
expires it is automatically marked PET and cached.
You can configure PET for a content group.

If you configure a content group as PET, every response in the content group is marked PET. The PET
content group can store responses that do not have validators. Responses that are automatically
marked PET are always expired. Responses that belong to a PET content group can expire after a
delay, based on how you configure the content group.

Two types of requests are affected by polling:

Conditional Requests: A client issues a conditional request to ensure that the response that it has is the
most recent copy.

A user-agent request for a cached PET response is always converted to a conditional request and sent
to the origin server. A conditional request has validators in If-Modified-Since or If-None-Match headers.
The If-Modified-Since header contains the time from the Last-Modified header. An If-None-Match
header contains the response's ETag header value.

If the client's copy of the response is fresh, the origin server replies with 304 Not Modified. If the copy is
stale, a conditional response generates a 200 OK that contains the entire response.

Non-Conditional Requests: A non-conditional request can only generate a 200 OK that contains the entire
response.

The following table summarizes response types based on the origin server's response

Table 3. How Responses Are Affected by Poll Every Time

Origin Server Response Action

Send the full response The origin server sends the response as-is to the client. If the cached
response has expired, it is refreshed.

304 Not Modified The following header values in the 304 response are merged with the cached
response and the cached response is served to the client:

Date
Expires
Age
Cache-Control header Max-Age and S-Maxage tokens

401 Unauthorized

400 Bad Request

405 Method Not Allowed

406 Not Acceptable

407 Proxy Authentication
Required

The origin's response is served as-is to the client. The cached response is not
changed.

citrix.com 62

1.
2.

Any other error response, for
example, 404 Not Found

The origin's response is served as-is to the client. The cached response is
removed.

Note: The Poll Every Time parameter treats the affected responses as non-storable.

To configure poll every time by using the command line interface

At the command prompt, type:

 <contentGroupName> YESadd cache contentgroup -pollEveryTime

To configure poll every time by using the configuration utility

Navigate to , and select the content group. > > Optimization Integrated Caching Content Groups
On tab, in the group, select Others Settings Poll every time (validate cached content with origin for every request)
option.

PET and Client-Specific Content

The PET function can ensure that content is customized for a client. For example, a Web site that serves content in
multiple languages examines the Accept-Language request header to select the language for the content that it is
serving. For a multi-language Web site where English is the predominant language, all English language content can be
cached in a PET content group. This ensures that every request goes to the origin server to determine the language for
the response. If the response is English, and the content has not changed, the origin server can serve a 304 Not
Modified to the cache.

The following example shows commands to cache English responses in a PET content group, configure a named
expression that identifies English responses in the cache, and configure a policy that uses this content group and
named expression. Bold is used for emphasis:

add cache contentgroup EnglishLanguageGroup -pollEveryTime YES
add expression containsENExpression â€“rule "http.res.header(\"Content-Language\").contains(\"en\")"
add cache policy englishPolicy -rule containsENExpression -action CACHE -storeInGroup englishLanguageGroup
bind cache policy englishPolicy -priority 100 -precedeDefRules NO

PET and Authentication, Authorization, and Auditing

Outlook Web Access (OWA) is a good example of dynamically generated content that benefits from PET. All mail
responses (*.EML objects) have an ETag validator that enables them to be stored as PET responses.

Every request for a mail response travels to the origin server, even if the response is cached. The origin server
determines whether the requestor is authenticated and authorized. It also verifies that the response exists in the origin
server. If all results are positive, the origin server sends a 304 Not Modified response.

citrix.com 63

1.

Configuring the Integrated Cache as a Forward Proxy

The integrated cache can service as a forward proxy device that passes requests to other NetScaler appliances or to
other types of cache servers. You configure the integrated cache as a forward proxy by identifying the IP addresses of
the cache server or servers. After configuring the forward proxy, the NetScaler appliance sends requests that contain
the configured IP address on to the cache server instead of involving the integrated cache.

To configure the NetScaler as a forward cache proxy by using the command
line interface

At the command prompt, type:

 <IPAddress> <port>add cache forwardProxy

To configure the NetScaler as a forward cache proxy by using the
configuration utility

Navigate to , and add a forward proxy by specifying the IP address > > Optimization Integrated Caching Forward Proxy
and port number.

citrix.com 64

1.

2.

3.

1.

2.

Default Settings for the Integrated Cache

The Citrix NetScaler integrated cache feature provides built-in policies with default settings as well as initial settings for
the Default content group. The information in this section defines the parameters for the built-in policies and Default
content group.

Default Caching Policies

Updated: 2013-08-26

The integrated cache has built-in policies. The NetScaler appliance evaluates the policies in a particular order, as
discussed in the following sections.

You can override these built-in policies with a user-defined policy that is bound to a request-time override or response-
time override policy bank.

Note that if you configured policies prior to release 9.0 and specified the -precedeDefRules parameter when binding the
policies, they are automatically assigned to override-time bind points during migration.

Viewing the Default Policies

The built-in policy names start with an underscore (_). You can view the built-in policies from the command line and the
administrative console using the command.show cache policy

Default Request Policies

You can override the following built-in request time policies by configuring new policies and binding them to the request-
time override processing point. In the following policies, note that the MAY_NOCACHE action stipulates that the
transaction is cached only when there is a user-configured or built-in CACHE directive at response time.

The following policies are bound to the policy label. They are listed in priority order._reqBuiltinDefaults

Do not cache a response for a request that uses any method other than GET.

The policy name is . The following is the policy rule:_nonGetReq

!HTTP.REQ.METHOD.eq(GET)

Set a NOCACHE action for a request with header value that contains If-Match or If-Unmodified-Since.

The policy name is . The following is the policy rule:_advancedConditionalReq

HTTP.REQ.HEADER("If-Match").EXISTS || HTTP.REQ.HEADER("If-Unmodified-Since").EXISTS

Set a MAY_NOCACHE action for a request with the following header values: Cookie, Authorization, Proxy-
authorization or a request which contains the NTLM or Negotiate header.

The policy name is . The following is the policy rule:_personalizedReq

HTTP.REQ.HEADER("Cookie").EXISTS || HTTP.REQ.HEADER("Authorization").EXISTS ||
HTTP.REQ.HEADER("Proxy-Authorization").EXISTS || HTTP.REQ.IS_NTLM_OR_NEGOTIATE

Default Response Policies

You can override the following default response-time policies by configuring new policies and binding them to the
response-time override processing point.

The following policies are bound to the policy label and are evaluated in the order in which they are _resBuiltinDefaults
listed:

Do not cache HTTP responses unless they are of type 200, 304, 307, 203 or if the types are between 400 and 499 or
between 300 and 302.

The policy name is . The following is the policy rule:_uncacheableStatusRes

!((HTTP.RES.STATUS.EQ(200)) || (HTTP.RES.STATUS.EQ(304)) || (HTTP.RES.STATUS.
BETWEEN(400,499)) || (HTTP.RES.STATUS.BETWEEN(300, 302)) || (HTTP.RES.STATUS.EQ
(307))|| (HTTP.RES.STATUS.EQ(203)))

Do not cache an HTTP response if it has a Vary header with a value of anything other than Accept-Encoding.

citrix.com 65

2.

3.

4.

5.

6.

7.

8.

1.
2.
3.
4.

5.

1.
2.

3.

4.

The compression module inserts the Vary: Accept_Encoding header. The name of this expression is
. The following is the policy rule:_uncacheableVaryRes

((HTTP.RES.HEADER("Vary").EXISTS) && ((HTTP.RES.HEADER("Vary").INSTANCE(1).LENGTH
> 0) || (!HTTP.RES.HEADER("Vary").STRIP_END_WS.SET_TEXT_MODE(IGNORECASE).eq
("Accept-Encoding"))))

Do not cache a response if its Cache-Control header value is No-Cache, No-Store, or Private, or if the Cache-Control
header is not valid.

The policy name is . The following is the policy rule:_uncacheableCacheControlRes

((HTTP.RES.CACHE_CONTROL.IS_PRIVATE) || (HTTP.RES.CACHE_CONTROL.IS_NO_CACHE) ||
(HTTP.RES.CACHE_CONTROL.IS_NO_STORE) || (HTTP.RES.CACHE_CONTROL.IS_INVALID))

Cache responses if the Cache-Control header has one of the following values: Public, Must-Revalidate, Proxy-
Revalidate, Max-Age, S-Maxage.

The policy name is . The following is the policy rule:_cacheableCacheControlRes

((HTTP.RES.CACHE_CONTROL.IS_PUBLIC) || (HTTP.RES.CACHE_CONTROL.IS_MAX_AGE) ||
(HTTP.RES.CACHE_CONTROL.IS_MUST_REVALIDATE) || (HTTP.RES.CACHE_CONTROL.
IS_PROXY_REVALIDATE) || (HTTP.RES.CACHE_CONTROL.IS_S_MAXAGE))

Do not cache responses that contain a Pragma header.

The name of the policy is . The following is the policy rule:_uncacheablePragmaRes

HTTP.RES.HEADER("Pragma").EXISTS

Cache responses that contain an Expires header.

The name of the policy is . The following is the policy rule:_cacheableExpiryRes

HTTP.RES.HEADER("Expires").EXISTS

If the response contains a Content-Type header with a value of Image, remove any cookies in the header and cache it.

The name of the policy is . The following is the policy rule:_imageRes

HTTP.RES.HEADER("Content-Type").SET_TEXT_MODE(IGNORECASE).STARTSWITH("image/")

You could configure the following content group to work with this policy:

add cache contentgroup nocookie_group -removeCookies YES

Do not cache a response that contains a Set-Cookie header.

The name of the policy is . The following is the policy rule:_ personalizedRes

HTTP.RES.HEADER("Set-Cookie").EXISTS || HTTP.RES.HEADER("Set-Cookie2").EXISTS

Restrictions on Default Policies

You cannot override the following built-in request time policies with user-defined policies.

These policies are listed in priority order.

Do not cache any responses if the corresponding HTTP request lacks a GET or POST method.
Do not cache any responses for a request if the HTTP request URL length plus host name exceeds 1744 byes.
Do not cache a response for a request that contains an If-Match header.
Do not cache a request that contains an If-Unmodified-Since header.

Note that this is different from the If-Modified-Since header.

Do not cache a response if the server does not set an expiry header.

You cannot override the following built-in response time policies. These policies are evaluated in the order in which they
are listed:

Do not cache responses that have an HTTP response status code of 201, 202, 204, 205, or 206.
Do not cache responses that have an HTTP response status code of 4xx, with the exceptions of status codes 403,
404, and 410.
Do not cache responses if the response type is FIN terminated, or the response does not have one of the following
attributes: Content-Length, or Transfer-Encoding: Chunked.

citrix.com 66

4. Do not cache the response if the caching module cannot parse its Cache-Control header.

Initial Settings for the Default Content Group

When you first enable integrated caching, the NetScaler appliance provides one predefined content group named the
Default content group. The following table shows the settings for this group.

Table 1. Predefined Settings for the Default Content Group

Parameter Description Default
Value

Hit
parameters

The hit parameters contain the parameter names that are significant for
generating a response.

In parameterized hit selection, NetScaler appliance matches the URL stem
byte-for-byte, matches normalized values of the hit parameters, and
matches the target service information.

none

Invalidation
Parameters

These parameters mark a cached object as obsolete during parameterized
selection. Specific objects, or all objects in a content group, are selected if
the values of the invalidation parameters in the object and in the request
are same after normalization. The invalidation parameters are a subset of
the hit parameters.

none

Poll Every
Time

Poll every time for the objects in this content group. NO

Ignore reload
request

Specifies whether a request can force the system to reload a cached
object from the origin. To guard against Denial of Service attacks, you
must set this flag to YES. To get RFC-compliant behavior you should set it
to NO.

YES

Remove
Response
Cookies

If this option is disabled for a content group, and if the response contains
cookies, the cookies are stored and served with every cache hit. By
default, the remove cookies option is enabled for a content group, to
prevent the integrated cache from storing any responses with Set-Cookie
or Set-Cookie2 headers unless the response is an image.

YES

Prefetch The Prefetch option refreshes an object when it is about to expire. This
ensures that the object remains stale or inactive (and therefore it cannot be
served) for a shorter duration of time.

YES

Prefetch
period

This duration in seconds during which prefetch should be attempted,
immediately before the object's calculated expiry time.

heuristic

Maximum
outstanding
prefetches

The number of items that can be subjected to a prefetch at a time. 4294967295

Flashcache Determines whether to enable queuing of client requests and simultaneous
distribution of responses to all clients in the queue.

NO

Expire at last
byte

Determines whether to expire a cached response immediately after serving
it.

NO

Insert Via
header

Defines a string to be inserted in a Via header. By default, a Via header is
inserted in all responses served from a content group. The Via header is
not inserted for responses that are served by the origin server.

YES

citrix.com 67

Insert Age
header

The Age header contains information about the age of the object in
seconds as calculated by the integrated cache.

YES

Insert ETag
header

With ETag header insertion, the integrated cache does not serve full
responses on repeat requests. This is done by forcing the user agent to
cache the dynamic response sent by the cache the first time.

YES

Cache-
control
header

You can enable caching of dynamic objects in the user agent by replacing
the Cache-Control headers that are inserted by the origin server. You must
configure the new Cache-Control header to be inserted in the content
group.

NONE

Quick abort
size

If the size of an object that is being downloaded is less than or equal to the
quick abort value, and a client aborts during the download, the cache stops
downloading the response. If the object is larger than the quick abort size,
the cache continues to download the response.

4194303
KBytes
(maximum)

Minimum
Response
Size

You can control memory use by setting a minimum response size. Cached
objects must be larger than the minimum response size.

0 KBytes

Maximum
Response
Size

You can control memory use by setting a maximum response size. Cached
objects must be smaller than the maximum response size.

80 KBytes

Memory
usage limit

Sets the maximum amount of memory that the cache can use. The
effective limit is based on the available memory of the NetScaler appliance.
The minimum value is 0 and the maximum value is unlimited.

UNLIMITED

Ignore
caching
headers in
request

Disregards Cache-Control and Pragma headers in HTTP requests. YES

MinHits
configured

Number of hits that are required to qualify a response for storage in this
content group.

0

Always
evaluate
policies

Â
NO

Pinned By default, when the cache is full the NetScaler appliance replaces the
least recently used response first. The NetScaler appliance does not apply
this behavior to content groups that are marked as pinned.

NO

Lazy DNS
resolution

If set to YES, DNS resolution is performed for responses only if the
destination IP address in the request does not match the destination IP
address of the cached response.

YES

citrix.com 68

1.

2.

Troubleshooting

If the integrated cache feature does not work as expected after you have configured it, you can use some common tools
to access NetScaler resources and diagnose the problem.

Resources for Troubleshooting

Updated: 2013-07-22

For best results, use the following resources to troubleshoot an integrated cache issue on a NetScaler appliance:

The relevant trace files
The ns.conf file
The RFC 2616 document
A copy of the object, if possible

In addition to the above resources, the following tools expedite troubleshooting:

The iehttpheaders or a similar utility
The Wireshark application customized for the NetScaler trace files

Troubleshooting Integrated Caching Issues

Updated: 2013-08-02

The following are effective steps to troubleshoot the objects that are not cached:

Verify that the Integrated Caching feature is enabled.

Run the following command to verify the feature is enabled:

show ns feature

Following is sample output of the above command:

show ns feature
 Feature status:
 Web Logging: OFF
 Surge Protection: OFF
 Load Balancing: ON
 Content Switching: ON
 Cache Redirection: OFF
 Sure Connect: OFF
 Compression Control: OFF
 Priority Queuing: OFF
 SSL Offloading: OFF
 Global Server Load Balancing: OFF
 Http DoS Protection: OFF
 Dynamic Routing: OFF
 Content Filtering: OFF
 Integrated Caching: ON
 SSL VPN: OFF
 OSPF Routing: OFF
 RIP Routing: OFF
 BGP Routing: OFF
 Done

The entry highlighted in boldface (for reference) in the above output indicates that the integrated caching feature
is enabled. If the feature is not enabled, run the following command to enable it:

enable ns feature IC

Make sure that sufficient memory is available on the NetScaler appliance.

Depending on the size of the object to be cached, memory available to store the cacheable object might be
insufficient. You can set the memory limit for the integrated cache either globally or for individual content groups.

Run the following command to verify the memory allocated to integrated cache globally:

show cache parameter

citrix.com 69

2.

3.

Following is sample output of the above command:

show cache parameter
 Integrated cache global configuration:
 Memory usage limit: 256 MBytes
 Via header: NS-CACHE-6.1: 101
 Verify cached object using: HOSTNAME_AND_IP
 Max POST body size to accumulate: 32768
 Current outstanding prefetches: 0
 Max outstanding prefetches: 4294967294
 Treat NOCACHE policies as BYPASS policies: YES
 Done

The entry highlighted in boldface (for reference) in the preceding output indicates the amount of memory
allocated to the integrated cache globally.

Run the following command to verify the memory allocated to an individual content group:

show cache contentGroup <Content_Group_Name>

Following is sample output of the above command:

show cache contentgroup content1
 Name: content1
 Heuristic expiry time parameter: 10 percent
 Weak relative expiry time - Positive responses: 3600 secs
 Weak relative expiry time - Negative responses: 600 secs
 Hit parameters: NONE
 Invalidation Parameters: NONE
 Invalidation restricted to host: NO
 Ignore parameter value case: NO
 Match Request Cookies: NO
 Poll Every Time: NO
 Ignore reload request: YES
 Remove Response Cookies: YES
 Prefetch: YES
 Prefetch period: heuristic
 Current outstanding prefetches: 0
 Max outstanding prefetches: 4294967294
 Flashcache: NO
 Expire at last byte: NO
 Insert Via header: YES
 Insert Age header: YES
 Insert ETag header: YES
 Cache-control header: NONE
 Quick abort size: 4194303 KBytes (MAXIMUM)
 Minimum Response Size: 0 KBytes
 Maximum Response Size: 80 KBytes
 Memory usage: 0 Bytes
 Memory usage limit: 64 MBytes
 Ignore caching headers in request: YES
 Non-304 hits: 0
 304 hits: 0
 Cached objects: 0
 Number of times expired/flushed: 1
 MinHits configured: 0
 Always evaluate policies: NO
 Pinned: NO
 Done

The entry highlighted in boldface (for reference) in the above output indicates the amount of memory allocated to
the content group.

Verify that cacheable object is small enough to be stored within the configured memory limits.
Complete the following procedure to make space for the object to be cached:

Run the following command to flush the cache for the content group to which the object belongs:

flush cache contentGroup <Content_Group_Name>

Verify that the object is cached. If the object is cached successfully, increase the memory allocated
for the content group. Otherwise, run the following command to flush the cache globally:

flush cache contentGroup ALL

citrix.com 70

3.

4.

5.

Verify that the object is cached. If the object is cached successfully, consider increasing the global
memory limit. If the object is still not cached, something else is causing the failure to cache the object.

The memory allocated to the integrated cache depends on the NetScaler appliance model. You can allocate
approximately half the available memory to the integrated cache. Similarly, the maximum about to memory you
can allocate for a content group cannot be more than the memory allocated for global cache.

To increase the global memory limit for the integrated cache, run the following command:

set cache parameter -memLimit <Integer>

To increase the memory limit for a content group, run the following command:

set cache contentgroup <contentgroup name> -memLimit <Integer>

Verify that the cache policy is bound to an appropriate bind point, an appropriate priority is set for the policy,
and an appropriateprecedeDefRulesswitch is configured.

You must activate a caching policy by binding it globally. To verify that the policy is active, run the following
command:

show cache global

Following is sample output of the above command:

show cache global
1) Name: red_pol State: ACTIVE Priority: 1
 Rule: URL CONTAINS red
 Action: NOCACHE
 Precede default HTTP rules: YES
 Hits : 10
 Done

In the output, verify the following settings:
The policy is bound: The output should contain all the active cache policies. If the cache policy for
the object to be cached is not listed in the output, the policy is not yet bound. Run the following
command to bind the policy globally:

bind cache global <Policy_Name> -priority <Integer> [-precedeDefRules
YES|NO]

: If the policy is bound, verify that the state of the policy is displayed as Active. The policy is Active
The entry indicating that the policy in the preceding output is active is the first highlighted entry in the
sample output of the show cache global command, above. The policy is active if it is bound globally
and an appropriate priority is set. Otherwise, the status of the policy is showed as Passive.

: The first highlighted entry in the sample output An appropriate priority is assigned to the policy
above displays the priority of the policy. If the priority is not set, you can use the bind command to set
the priority of the policy. Note that the higher the priority number, the lower the priority. The priority
assigned to the policy enables the NetScaler appliance to determine the order in which the policy
should be evaluated.

If evaluation of a particular policy fails, increase the priority of the policy so that it is evaluated
before other policies. Caching policies, due to their high granularity, can be very complicated to
configure. Therefore, two policies might be contradictory. As a result, only the higher-priority
policy takes effect.

 setting is correct: The second highlighted entry in the sample output of The precedeDefRules switch
the show cache global command, above, indicates the switch setting. This precedeDefRules
setting enables the NetScaler appliance to determine whether the policy should be evaluated before
the default built-in policies, which implement the standard HTTP caching behavior, such as basing
caching decisions on HTTP header fields (for example, the If-Modified-Since and no-cache fields).
You can set this switch when binding the policy.

For certain types of HTTP(S) transactions, you might have to make sure that the policy precedes
default HTTP rules, to force objects to be cached. Especially if requests include header fields,
such as If-Modified-Since, or responses contain the No-Cache header field, you might have to
make sure that the cache policy overrides the default in order for objects from these transactions
to be cached. Force the policy to override default HTTP rules by rebinding the cache policy with
the switch.-precedeDefRules YES

citrix.com 71

5.

a.
b.

c.
d.

Verify the size of the object to be cached.

You can configure a content group with minimum, which by default is 0 KB, and maximum, which by default is 80
KB, response sizes for the objects to be cached. The object does not get cached if its size is not within the
configured range. Additionally, verify that the cache expiry times are set to an appropriate value. For example,
check for a very small time limit, such as one second.

Run the following command from the command line interface of the appliance to display the size limits and expiry
times for a specific content group:

show cache contentGroup <Content_Group_Name>

Following is an example of this commandâ€™s output:

show cache contentGroup content1
 Name: content1
 Heuristic expiry time parameter: 10 percent
 Weak relative expiry time - Positive responses: 3600 secs
 Weak relative expiry time - Negative responses: 600 secs
 Hit parameters: NONE
 Invalidation Parameters: NONE
 Invalidation restricted to host: NO
 Ignore parameter value case: NO
 Match Request Cookies: NO
 Poll Every Time: NO
 Ignore reload request: YES
 Remove Response Cookies: YES
 Prefetch: YES
 Prefetch period: heuristic
 Current outstanding prefetches: 0
 Max outstanding prefetches: 4294967294
 Flashcache: NO
 Expire at last byte: NO
 Insert Via header: YES
 Insert Age header: YES
 Insert ETag header: YES
 Cache-control header: NONE
 Quick abort size: 4194303 KBytes (MAXIMUM)
 Minimum Response Size: 0 KBytes
 Maximum Response Size: 80 KBytes
 Memory usage: 0 Bytes
 Memory usage limit: UNLIMITED
 Ignore caching headers in request: YES
 Non-304 hits: 0
 304 hits: 0
 Cached objects: 0
 Number of times expired/flushed: 0
 MinHits configured: 0
 Always evaluate policies: NO
 Pinned: NO
 Done

In addition to the above steps for troubleshooting integrated caching issues, you can consider using the following
troubleshooting techniques:

Depending on the configuration of a policy, there are virtually an unlimited number of reasons for the
policy not getting evaluated. If you have completed the preceding steps to troubleshoot the issue,
consider completing the following procedure to troubleshoot the issue further:

Flush the cache.
Verify the value of the hit parameter for the policy by running the following command:

show cache global
1) Name: home_pol_1 State: ACTIVE Priority: 99
 Rule: URL CONTAINS home
 Action: NOCACHE
 Precede default HTTP rules: NO
 Hits : 29

Send an HTTP request for the related object from a Web browser.
Run the show cache global command again and verify that the value for the hit parameter has
incremented.

citrix.com 72

5.

Depending on the policy receiving hits or not, you can determine whether the issue is due to the
policy have not been configured correctly or to a more global cache setting.

citrix.com 73

Front End Optimization

Note: Front end optimization is available if you have an Enterprise or Platinum NetScaler license and are running NetScaler
release 10.5 or later.

The HTTP protocols that underlie web applications were originally developed to support transmission and rendering of
simple web pages. New technologies such as JavaScript and cascading style sheets (CSS), and new media types such
as Flash videos and graphics-rich images, place heavy demands on front-end performance, that is, on performance at
the browser level.

The NetScaler front end optimization (FEO) feature addresses such issues and reduces the load time and render time
of web pages by:

Reducing the number of requests required for rendering each page.
Reducing the number of bytes in page responses.
Simplifying and optimizing the content served to the client browser.

You can customize your FEO configuration to provide the best results for your users. NetScaler ADCs support
numerous web content optimizations for both desktop and mobile users. The following tables describe the front-end
optimizations provided by the FEO feature, and the operations performed on different types of files.

Optimizations Performed by the FEO Feature

Web
Optimization

Problem What NetScaler
FEO feature
does

Benefits

Inlining
Client browsers often send multiple
requests to servers for loading external
CSS, images, and JavaScript
associated with the web page.

CSS inline

JavaScript
inline

CSS
combine

Loading the external CSS,
images, and JavaScript inline
with the HTML files improves
page-rendering time. This
optimization is beneficial for
content that will be viewed only
once, and for mobile devices
that have limited cache sizes.

Minification
Data fetched from servers includes
inessential characters such as white
spaces, comments, and newline
characters. The time that browsers
spend in processing such data creates
website latency.

CSS
minification

JavaScript
minification

Removal
of HTML
comments

Minified files consume less
bandwidth and avoid the
latency caused by special
processing.

Image
optimization Mobile browsers often have slow

connection speeds and limited cache
memory. Downloading images on
mobile clients consumes more
bandwidth, processing time, and cache
space, resulting in web site latency.

JPEG
optimization

CSS
image
inlining

Image
shrink-to
attributes

GIF to
PNG
conversion

HTML
image
inlining

Reduces the image to the size
indicated in image tag by
NetScaler, enabling client
browsers to load images faster.

Repositioning

citrix.com 74

1.

Inefficient processing of external CSS,
images, and JavaScript increases page-
load time.

Image lazy
loading

CSS move
to Head

JavaScript
move to
end

Repositions HTML elements, to
reduce rendering time for web
pages and enable client
browsers to load the objects
faster.

Connection
Management Many browsers set limits on the number

of simultaneous connections that can be
established to a single domain. This can
cause browsers to download webpage
resources one at a time, resulting in
higher browsers time.

Domain
sharding

CSS
import to
link

Overcomes the connection
limitation, which improves page-
rendering time by enabling
client browsers to download
more resources in parallel.

Web Optimizations performed on different file types

The following table lists the web optimizations that the NetScaler ADC performs on CSS, Images, JavaScript, and HTML:

Object Optimization

CSS Minify linked CSS files.
Combine multiple linked CSS files that are present within the <head> tag into a single
CSS file.
Convert linked CSS files to inline CSS files.
Convert CSS import rule to linked CSS.
Note: This optimization works if you have not defined the scope and media attributes for
the <import> tag and when the <import> tag immediately follows the <style> tag.
Within a linked CSS file, convert linked images to inline images.
Move a CSS present within the <body> tag of an HTML page to the <head> tag.
Note: The <head> tag must already be present within the HTML script.

Images Optimize JPEG images by removing extraneous bytes.
Reduce image size by weakening the image quality to a value specified in FEO
parameters.
Image shrink to attributes.
Convert linked images to inline images.
Note: For animated images in GIF format, only this optimization is supported.
Convert non-animated images in GIF format to PNG format.
Reduce the image size to that specified on the web page, if the size specified on the web
page is smaller
Convert images in GIF, PNG, JPEG format to WebP format
Convert images in JPEG format to JPER-XR format
Lazy loading.

JavaScript Minify linked JavaScript
Convert linked JavaScript to inline JavaScript.
Move JavaScript present in the <body> tag to the end of the <body> tag.
Note: The size of the <body> tag must be lesser than 64 Kbytes.
Extend cache expiry period.

Note: The front end optimization feature supports ASCII characters only. It does not support the unicode character set.

How Front End Optimization Works

After the NetScaler ADC receives the response from the server:

Parses the contents of the page, creates an entry in the cache (wherever applicable), and applies the FEO policy.

*

*

**

citrix.com 75

1.

2.

3.

For example, a NetScaler ADC can apply the following optimization rules:

Remove white spaces or comments present within a CSS or JavaScript.
Combine one or more CSS files to one file.
Convert GIF image format to PNG format.

Rewrites the embedded objects and saves the optimized content in the cache, with a different signature than the one
used for the initial cache entry.
For subsequent requests, fetches the optimized objects from the cache, not from the server, and forwards the
responses to the client.

Remove extraneous information such as white spaces and comments.

Remove extraneous information such as white spaces and comments.

The period during which the browser can use the cached resource without checking to see if fresh content is available on the
server.

*

*

**

citrix.com 76

1.

2.

3.

4.

5.

Configuring Front End Optimization

Optionally, you can change the values of the front end optimization global settings. Otherwise, begin by creating actions
that specify the optimization rules to be applied to the embedded objects.

After configuring actions, create policies, each with a rule specifying a type of request for which to optimize the
response, and associate the actions with the policies.

Note: The NetScaler ADC evaluates front end optimization policies at request time only, not at response time.

To put the policies into effect, bind them to bind points. You can bind a policy globally, so that it applies to all traffic that
flows through the NetScaler ADC, or you can bind the policy to a load balancing or content switching virtual server of
type HTTP or SSL. When you bind a policy, assign it a priority. A lower priority number indicates a higher value. The
NetScaler ADC applies the policies in the order of their priorities.

Prerequisites for Front End Optimization

Front end optimization requires the NetScaler integrated caching feature to be enabled. Additionally, you must perform the
following integrated caching configurations:

Allocate cache memory.
Set the maximum response size and memory limit for a default cache content group.

For more information on configuring integrated caching, see .

To configure front end optimization by using the command line interface

At the command prompt, do the following:

Enable the front end optimization feature.

enable ns feature FEO

Create one or more front end optimization actions.

add feo action <name> [-] [-] ...imgShrinkToAttrib imgGifToPng

 To add a front end optimization action for converting images in GIF format to PNG format and to extend Example:
cache expiry period:

add feo action allact -imgGifToPng -pageExtendCache

[Optional] Specify non-default values for front end optimization global settings.

set feo parameter [-cacheMaxage <integer>] [-JpegQualityPercent <integer>] [-cssInlineThresSize <integer>] [-
inlineJsThresSize <integer>] [-inlineImgThresSize <integer>]

 To specify the cache maximum expiry period:Example:

set feo parameter -cacheMaxage 10

Create one or more front end optimization policy.

add feo policy <name> <rule> <action>

To add a front end optimization policy and associate it with the above specified action:Example: allact

>add feo policy pol1 TRUE allact
>add feo policy pol1 "(HTTP.REQ.URL.CONTAINS(\"testsite\"))" allact1

Bind the policy to a load balancing or content switching virtual server, or bind it globally.

bind lb vserver <name> - <string> - <num>policyName priority

bind cs vserver <name> - <string> - <num>policyName priority

bind feo global <policyName> <priority> - <type> <gotoPriorityExpression>type

 To apply the front end optimization policy to a virtual server named "abc":Example:

> bind lb vserver abc -policyName pol1 -priority 1 -type NONE

 To apply the front end optimization policy for all the traffic reaching the ADC:Example:

Integrated Caching

http://docs.citrix.com/en-us/netscaler/10-1/ns-optimization-wrapper-10-con/ns-IC-gen-wrapper-10-con.html

citrix.com 77

5.

6.

1.
2.

3.

4.

5.
a.
b.
c.

> bind feo global pol1 100 -type REQ_DEFAULT

Save the configuration.

save ns config

Configuring front end optimization by using the configuration utility

Enable the front end optimization feature using the command line interface.
Create a front end optimization action.

Navigate to , click and create a front end optimization action > > Optimization Front End Optimization Actions Add
by specifying the relevant details.

[Optional] Specify the front end optimization global settings.

Navigate to , and on the right-pane, under , click > Optimization Front End Optimization Settings Change Front
 and specify the front end optimization global settings.End Optimization settings

Create a front end optimization policy.

Navigate to , click and create a front end optimization policy > > Optimization Front End Optimization Policies Add
by specifying the relevant details.

Bind the policy to a load balancing or content switching virtual server.
Navigate to . > > Optimization Front End Optimization Policies
Select a front end optimization policy and click .Policy Manager
Under , bind the front end optimization policy to a load balancing or Front End Optimzation Policy Manager
content switching virtual server.

Verifying Front End Optimization Configuration

Updated: 2015-01-12

The dashboard utility displays summary and detailed statistics in tabular and graphic formats. You can view the FEO
statistics to evaluate your FEO configuration.

Optionally, you can also display statistics for an FEO policy, including the number of hits that the policy counter
increments during policy based FEO.

Note: For more information about statistics and charts, see the Dashboard help on the Citrix NetScaler appliance.

To View FEO statistics by using the command line interface

At the command prompt, type the following commands to display a summary of FEO statistics, FEO policy hits and
details, and detailed FEO statistics, respectively:

stat feo
Note: The command displays statistics only for advanced FEO policies.stat feo policy
show feo policy <name>
stat feo -detail

To view FEO statistics on the Dashboard

In the Dashboard utility, you can:

Select to display a summary of FEO statistics.Front End Optimization
Click the tab to display the rate of requests processed by the FEO feature.Graphical View

citrix.com 78

Sample Optimization

The following table lists some examples of content optimization actions that are applied on HTML content and the embedded
objects within the HTML content.

Optimization
rule

Sample

Collapse
white
spaces
within an
HTML page

Before:

<title>Hello, world! </title>

After:

<title>Hello, world!</title>

Combine
CSS

Before:

<link rel="stylesheet" type="text/css" href=" "> sheet/abc.css
<link rel="stylesheet" type="text/css" href=" "> sheet/xyz.css

After:

<link rel="stylesheet" type="text/css" href=" ">sheet/abc.css+xyz.css

Inline CSS
Before

<html>
 <head>
 <link rel="sheet" href="abc.css"/>
 </head>
 <body>
 <div class="abc xyz"/>
 Hi!
 </body>
</html>

Note: abc.css contains

.Alice {location: Australia;}

.Tom {location: Asia;}

After

<html>
 <head>
 <style>
 .Alice {location: Australia;}
 .Tom {location: Asia;}
 </style>
 </head>
 <body>
 <div class="abc xyz">
 Hi!
 </div>
 </body>
</html>

Move CSS
to head

Before:

<html>
 <head>
 </head>
 <body>
 <script src="abc.js" type="text/javascript"></script>
 <div class="monday tuesday>
 Hi!
 </div>

citrix.com 79

 <style type="text/css">
 .foo { day: wednesday; }
 </style>
 <link rel="stylesheet" type="text/css" href="styles/all_styles.css">
 </body>
 </html>

After:

<html>
 <head>
 <style type="text/css">
 .foo { day: wednesday; }
 </style>
 </head>
 <body>
 <script src="abc.js" type="text/javascript"></script>
 <div class="monday tuesday>
 Hi!
 </div>
 <link rel="stylesheet" type="text/css" href="styles/all_styles.css">
 </body>
 </html>

Minify
JavaScript

Before:

/* Remove this comment */
document.write("abc " + state);
state += 1; // Update this.

After:

document.write("abc "+state);state+=1;

Convert
linked
JavaScript
to inline
JavaScript

Before

<html>
 <head>
 <script type="text/javascript" src="abc.js"></script>
 </head>
 <body>
 <div>
 Hi!
 </div>
 </body>
</html>

Note: abc.js contains

/* contents of abc JavaScript file */

After

<html>
 <head>
 <script type="text/javascript">
 /* contents of abc JavaScript file */
 </script>
 </head>
 <body>
 <div class="abc">
 Hi!
 </div>
 </body>
 </html>

citrix.com 80

1.

2.

3.

4.

5.

6.

7.

Content Accelerator

Note: Supported on NetScaler 10.1.e and from NetScaler 10.5 onwards. It is not supported on NetScaler 10.1.

Content accelerator is a NetScaler feature that you can use in a Citrix ByteMobile T1100 deployment, to store data on a
Citrix ByteMobile T2100 appliance. For more information about Citrix ByteMobile, see .

Storing data on a T2100 appliance saves bandwidth and provides faster response times, because the NetScaler does
not have to connect to the server for repeated requests of the same data.

Note: Content accelerator works with a Citrix ByteMobile platinum license. Contact customer support for more information
and for obtaining the license.

The following video shows the packet flow and configuration steps (also explained in subsequent topics) for the content
accelerator feature.

Note: The video might take some time to load. If it does not open, click .
This document includes the following details:

How Content Accelerator Works
Configuring Content Accelerator

How Content Accelerator Works

Updated: 2015-05-20

When a load balancing or content switching virtual server receives a client request, the NetScaler appliance evaluates a
content accelerator policy that you have bound to the virtual server. The policy filters the requests to identify the ones to
which to apply the content accelerator feature.

Note: For HTTP requests, the content accelerator feature can serve partial content in response to single byte-range requests.

The following figure illustrates the operations that the appliance performs when a client request arrives at a virtual server
configured to use the content accelerator feature:

The process flow is as follows:

Client sends request.

NetScaler forwards the request to the server.

Server responds with the predefined size of the response (specified by the parameter of the accumResSize add
 command).ca action

NetScaler computes a hash of the response sent by the server.

NetScaler looks up the hash on the T2100 appliance.

A successful lookup indicates that the data is available and the T2100 appliance sends the data to the
NetScaler.

Note:

When a lookup does not succeed, the NetScaler fetches all of the requested data from the
server, and simultaneously serves the data to the client and updates the data on the T2100
appliance.

The T2100 appliance can be configured to specify the number of requests after which to cache
the data.

NetScaler sends the response to the client.

How ByteMobile Works

here

How Content Accelerator Works
Configuring Content Accelerator

http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-content-accl-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-content-accl-con.html
http://www.citrix.com/products/bytemobile/how-it-works.html
http://www.citrix.com/tv/#videos/9651
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-content-accl-con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns-content-accl-con.html

citrix.com 81

1.

2.

3.

4.

5.

6.

7.

Configuring Content Accelerator

Updated: 2013-12-16

Before configuring the content accelerator feature, you must enable it on the NetScaler appliance.

You can configure the content accelerator feature to use one or multiple T2100 appliances. You must add each T2100
appliance as a service and bind these services to a load balancing virtual server that is dedicated to distributing the load
between the configured T2100 appliances.

You must also configure a content accelerator action to lookup the data on the T2100 appliance. The action must also
specify the T2100 load balancing virtual server and the size of data (in KB) to be fetched from the server to calculate the
hash.

The action must be bound to a content accelerator policy that defines the traffic on which to perform content
acceleration. The content accelerator policy must be bound to a content switching or load balancing virtual server that
receives client traffic. Alternatively, you can bind the policy globally to be applicable to all virtual servers.

Configuring content accelerator by using the command line interface

At the command prompt, do the following:

Enable the content accelerator feature.

enable ns feature ca

Identify the T2100 appliances and add each as a service on the NetScaler appliance.

add service <name> <IPAddress> <serviceType> <port>

Example:

> add service T2100-A 10.102.29.61 HTTP 30
> add service T2100-B 10.102.29.62 HTTP 40
> add service T2100-C 10.102.29.63 HTTP 50

Note: The services must be of type HTTP only.
Create a load balancing virtual server for the T2100 appliances. Specify the token load balancing method and the rule
shown in the following syntax.

 <name> <serviceType> <IPAddress> <port> - - add lb vserver lbMethod TOKEN rule "http.req.url.
after_str(\"/lookup/\") alt http.req.url.path.SKIP(1).PREFIX(64)"

Example:

> add lb vserver T2100-lbvserver HTTP 10.102.29.64 99 -lbMethod TOKEN -rule "http.req.url.after_str(\"/lookup/\") alt
http.req.url.path.SKIP(1).PREFIX(64)"

Bind the T2100 services to the load balancing virtual server that you created for them.

bind lb vserver <name> <serviceName>

Example:

> bind lb vserver T2100-lbvserver T2100-A
> bind lb vserver T2100-lbvserver T2100-B
> bind lb vserver T2100-lbvserver T2100-C

Define a content accelerator action.

add ca action <name> - <KBytes> - <string> - accumResSize lbvserver type lookup

Example:

> add ca action ca_action1 -type lookup -lbvserver T2100-lbvserver -accumResSize 60

Define a content accelerator policy.

add ca policy <name> - <expression> - <name>rule action

 To create a content accelerator policy that caches all video formats.Example:

> add ca policy ca_mp4_pol -rule ns_video -action ca_action1

where ns_video is a built-in expression.

citrix.com 82

7.

8.

1.
2.

a.
b.

3.
a.
b.
c.
d.

e.
4.

a.
b.

5.
a.
b.

6.
a.
b.

Bind the content accelerator policy to either a virtual server that receives traffic or globally to the NetScaler system.

bind lb vserver <name> - <string>policyName

bind cs vserver <name> - <string>policyName

 - <string> - <num> - <type>bind ca global policyName priority type

 To apply the content accelerator policy to a virtual server named "traf_rec"Example:

> bind lb vserver traf_rec -policyName ca_mp4_pol

 To apply the content accelerator policy for all traffic reaching the NetScaler.Example:

> bind ca global -policyName ca_mp4_pol -priority 100 -type RES_DEFAULT

Save the configuration.

save ns config

Configuring content accelerator by using the configuration utility

Navigate to and select . > > System Settings Configure Advanced Features Content Accelerator
Create a service for each of the T2100 appliances.

Navigate to . > > Traffic Management Load Balancing Services
Click and specify the relevant details. In the field, make sure you specify the IP address of the Add Server
T2100 appliance. In the field select .Protocol HTTP

Create a virtual server and bind the T2100 services to it.
Navigate to . > > Traffic Management Load Balancing Virtual Servers
Click and specify the relevant details.Add
In the tab, specify the as .Method and Persistence Method Token
In the tab, specify the rule as Policies http.req.url.after_str(\"/lookup/\") alt http.req.url.

.path.SKIP(1).PREFIX(64)
In the tab, select the T2100 services that you want to bind to the virtual server.Services

Create a content accelerator action.
Navigate to . > > Optimization Content Accelerator Actions
Specify the relevant details.

Create a content accelerator policy.
Navigate to . > > Optimization Content Accelerator Policies
Click , specify the policy rule, and associate the content accelerator action.Add

Bind the content accelerator policy globally or to a virtual server.
Navigate to . > Optimization Content Accelerator
Under the or Content Accelerator Policy Manager [REQUEST] Content Accelerator Policy Manager

 sections, bind the content accelerator policy globally or to a virtual server.[RESPONSE]

citrix.com 83

SPDY (Speedy)

Note: Supported from NetScaler 10.1 onwards.
SPDY is an open networking experimental protocol developed by Google to reduce the time taken by a client to load a web
page in a browser. An application layer protocol, SPDY changes the way in which HTTP requests and responses are
handled. SPDY offers the following advantages compared to a regular HTTP transaction:

Multiplexed requests and responsesâ€”In a single SPDY session, multiple requests from the client can be
sent over a single TCP connection to the server. This reduces the number of TCP connections and also
optimizes usage of each TCP connection.
Request prioritizationâ€”When requesting services from the server, a client can assign a priority to each
request.
Header Compressionâ€”SPDY compresses the HTTP request and response headers, saving bandwidth and
reducing latency.
Server pushâ€”The server can send data to the client before the client requests it.
Securityâ€”SPDY is secure by design, because SSL is required for SPDY connections.

NetScaler supports the SPDY/2 and SPDY/3 (from NetScaler 10.5 onwards) versions.

Note: SPDY support depends on the browser version being used.

If you use a NetScaler appliance as a SPDY gateway for your servers, the servers do not have to support SPDY. The
NetScaler appliance accepts the incoming SPDY requests, converts them, and sends them to the servers as HTTP
requests. It also converts the HTTP responses and sends them to the clients as SPDY responses. While the key value
of SPDY is reduced bandwidth consumption and faster communication with clients, an additional benefit of the
NetScaler solution is that you avoid the time consuming task of upgrading your web servers and applications to support
SPDY.

To use a NetScaler appliance as a SPDY gateway, you must enable SPDY on the appliance.

This document includes the following details:

SPDY Requirements
How SPDY Works over SSL
Configuring SPDY on the NetScaler Appliance
Troubleshooting for SPDY

SPDY Requirements

Both ends of a SPDY connection must support the same version of SPDY. In addition, the clients must meet the following
requirements:

Support ZLIB compression and accept compressed data.
Support the Next Protocol Negotiation (NPN) TLS extension, because NPN is used in the TLS handshake.

How SPDY Works over SSL

Updated: 2014-03-13

If SPDY is enabled, when the NetScaler appliance sees TLS ALPN extension with list of supported protocols in the
Client Hello message, it responds with either SPDY/3 or SPDY/2 in the ALPN extension in its Server Hello.

NetScaler can also negotiate SPDY over NPN. When NetScaler sees an empty NPN extension in the Client Hello
message, it responds with a list of the protocols that it supports. If SPDY is enabled on the NetScaler appliance, the
appliance advertises HTTP/1.1 and SPDY/2 protocols. The client selects one protocol from this list and negotiates the
protocol with the server. Because sending the negotiated protocol in plain text would raise security issues, the client
sends the Change Cipher Spec notification which defines the details of the encryption for the session, followed by the
Next Protocol message, which contains the encrypted protocol that the client has chosen. The client then sends the
Finished message. The NetScaler appliance decrypts the Next Protocol message, and then sends a Finished message.

A session is then established, and application data can be exchanged.

Note: The NPN extension is not supported on a NetScaler FIPS appliance, and with TLS protocol versions 1.1 and 1.2.

Configuring SPDY on the NetScaler Appliance

Updated: 2014-09-15

SPDY Requirements
How SPDY Works over SSL
Configuring SPDY on the NetScaler Appliance
Troubleshooting for SPDY

http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns_spdy_gen_wrapper_con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns_spdy_gen_wrapper_con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns_spdy_gen_wrapper_con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns_spdy_gen_wrapper_con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns_spdy_gen_wrapper_con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns_spdy_gen_wrapper_con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns_spdy_gen_wrapper_con.html
http://docs.citrix.com/en-us/netscaler/10-5/ns-optimization-wrapper-10-con/ns_spdy_gen_wrapper_con.html

citrix.com 84

1.

2.

1.
2.

By default, SPDY is disabled on the NetScaler appliance. After you enable SPDY, the appliance advertises SPDY/2
and/or SPDY/3 along with HTTP/1.1 during an SSL handshake. To enable SPDY on the NetScaler appliance, you must
enable SPDY in the HTTP profile bound to the SSL virtual server.

To configure SPDY by using the command line interface

At the command prompt, do the following:

Enable SPDY on a HTTP profile.

 <profileName> - <options>set ns httpProfile SPDY

Example

> set ns httpProfile profile1 -SPDY ENABLED

Bind the HTTP profile to a SSL virtual server.

 <ssl-vserver-name> - <httpProfile-with-spdy>set lb vserver httpProfileName

Example

> set lb vserver SPDY_LB -httpProfileName profile1

Note: To apply SPDY globally, enable SPDY on the global HTTP profile (nshttp_default_profile).

You can view the statistics by using the following command:

stat protocol http -detail

To configure SPDY by using the configuration utility

Navigate to , and in the tab, update the profile on which you want to enable SPDY. > System Profiles HTTP Profiles
Navigate to , and associate the HTTP profile to the > > Traffic Management Load Balancing Virtual Servers
appropriate SSL virtual server.

Troubleshooting for SPDY

If SPDY sessions are not enabled even after performing the required steps, check the following conditions.

If the client is using a Chrome browser, SPDY might not work in some scenarios because Chrome
sometimes does not initiate TLS handshake.
If there is a forward-proxy between the client and the NetScaler appliance, and the forward-proxy doesn't
support SPDY, SPDY sessions might not be enabled.
NetScaler does not support NPN over TLS 1.1/1.2. To use SPDY, the client should disable TLS1.1/1.2 in the
browser.
Similarly, if the client wants to use SPDY, SSL2/3 must be disabled on the browser.

citrix.com 85

© 1999-2015 Citrix Systems, Inc. All Rights Reserved.

